OPTIMIZACIÓN DEL MODELO DE COSTOS DE OPERACIÓN EN LA RECOLECCIÓN DE ACEITE VEGETAL USADO EN BOGOTÁ

ANGIE JURANY BERNAL CARVAJAL COD: 10274

UNIVERSIDAD ECCI FACULTAD DE INGENIERÍA INGENIERÍA INDUSTRIAL BOGOTÁ, D.C. 2019

OPTIMIZACIÓN DEL MODELO DE COSTOS DE OPERACIÓN EN LA RECOLECCIÓN DE ACEITE VEGETAL USADO EN BOGOTÁ

ANGIE JURANY BERNAL CARVAJAL COD: 10274

Trabajo de Grado para obtener el título de Ingeniera Industrial

DIONISIO MALAGON Ing. Qco, PhD. Ing. Química

HENRY CORTES
Ing Mco, M.Sc., Ph.D. Ing. Mecánica

UNIVERSIDAD ECCI FACULTAD DE INGENIERÍA INGENIERÍA INDUSTRIAL BOGOTÁ, D.C. 2019

TABLA DE CONTENIDOS

1. INTRODUCCIÓN	11
1.1 Problema de Investigación	12
1.1.1 Descripción del problema	
1.1.2 Formulación del problema	
4.0 Leading of Co.	
1.2 Justificación	13
1.3 Objetivos	
1.3.1 Objetivo general	
1.3.2 Objetivos específicos	15
2. MARCO TEORICO	16
2.1 Optimización	16
2.2 Optimización Combinatoria	17
·	
2.3 Modelo Matemático	18
2.4 Etapas en el desarrollo de un modelo Matemático	
2.4.1 Identificación del problema	
2.4.2 Especificación Matemática y Formulación	
2.4.3 Resolución	
2.4.4 Verificación y validación	
2.4.5 Análisis de los resultados	20
2.5 Técnicas de Optimización	
2.5.1 Programación Lineal	20
2.5.2 Programación Entera	
2.5.3 Programación Dinámica	
2.5.4 Programación no lineal	21
2.6 Modelos de Optimización	22
2.7 Modelo del Problema de Enrutamiento de Vehículos (VRP)	23
2.7.1 Características y elementos del VRP	24
2.8 Heurísticas para la solución del problema VRP	26
2.8.1 Modelo de los Ahorros (Savings Criterion - Clarke and Wright 1958)	26
2.8.2 Heurísticas de Inserción	27
2.8.3 Algoritmo de Barrido	27
2.8.4 Algoritmo de Ramificación y Acotamiento (Branch and Bound)	28
2.8.5 Algoritmo de los pétalos	
2.8.6 Procedimientos de Búsqueda Local	29
2.11 MARCO CONCEPTIIAI	20

	2.11.1 Aceite Vegetal Usado (AVU)	
2	2.11.2 Acopiador	30
	2.11.3 Biodiesel	
2	2.11.4 Disposición final	31
2	2.11.5 Establecimiento generador	31
	2.11.6 Gestor de residuos	
	2.11.7 Logística Inversa	
	2.11.8 Planeación y Programación de Transporte	
	2.11.9 Planificación de la Demanda	
	2.11.10 Ruta	
	2.11.11 Ruteo	
2.1	12 MARCO LEGAL	32
3.	MODELAMIENTO MATEMÁTICO	35
	l Elementos a considerar en el modelo matemático	
	3.1.1 Depósito	
	3.1.3 Vehículo	
;	3.1.4 Aceite por recolectar por punto	41
	2 Parámetros utilizados en el modelo matemático	
3	3.2.1 Contenedores de recolección	45
(3.1.10 Horario	47
;	3.1.11 Tiempo de recolección por punto	47
3.2	2 Descripción del Modelo	48
3.3	3 Formulación del Modelo	49
3	3.3.1 Variables	49
(3.3.2 Parámetros	49
	3.3.3 Función objetivo:	
;	3.3.4 Restricciones	51
4.0	OPTIMIZACIÓN MODELO MATEMÁTICO	52
4.1	I VRP SOLVER	52
	3 Componentes de la aplicación VRP Solver	
	4.3.1 Servidor de enrutamiento	
	4.3.2 R Studio	
4	4.3.3 Lenguaje de Programación R	55
4.5	5 Programación modelo propuesto	56
4.6	6 Prueba Semanal	58
4	4.6.1 Datos	58
4	4.6.2 Matriz de Distancia	60
	4.6.3 Matriz de Tiempo Semanal	
	4.6.4 Ruta Optima prueba semanal	
	4.6.5 Gráfica ruta óptima	
4.7	7 Prueba Quincenal	70
	4.7.1 Datos	
	4.7.2 Matriz de Distancia Quincenal	
	4.7.3 Matriz de Tiempo Quincenal	
		/ 4

4.7.4 Ruta Optima prueba Quincenal	74
4.7.5 Gráfica ruta óptima	
4.8 Prueba Mensual	
4.8.1 Datos	
4.8.2 Matriz de Distancia Mensual	82
4.8.3 Matriz de Tiempo Mensual	83
4.8.4 Ruta Óptima	86
4.8.5 Recorrido ruta óptima	
4. ANALISIS DE LOS RESULTADOS	90
4.1 Tiempo Total Recorrido	90
4.2 Costo Total Kilómetros Recorridos	91
4.3 Costo Total por aceite recolectado	91
4.4 Costos Ruta de Recolección Bogotá	93
6. CONCLUSIONES	97
7. BIBLIOGRAFIA	98
ANEXOS	102

LISTA DE TABLAS

Tabla 1. Normatividad Colombia aceite vegetal usado	33
Tabla 2. Tamaño de la muestra modelo propuesto	
Tabla 3. Resultados de modelos	
Tabla 4. Litros de aceite producido por punto de recolección	
Table 6. Costo oficientes para calcular costo del kilémetro en Bogeté	43
Tabla 6. Costos eficientes para calcular costo del kilómetro en Bogotá	
Tabla 7. Clasificación de contenedores según su capacidad en litros	
Tabla 9 Asignación de tiempos por cantidad de recolección	48
Tabla 10. Datos con frecuencia de recolección entre 5 y 7 días	
Tabla 11. Matriz de Distancia prueba semanal	
Tabla 12. Matriz de Tiempo prueba semanal	62
Tabla 13. Ruta optima prueba semanal	63
Tabla 14 Datos con frecuencia de recolección entre 10 y 15 días	
Tabla 15. Matriz distancia prueba quincenal	
Tabla 16. Matriz de tiempo prueba quincenal.	
Table 18 Dates can frequencie de recologiée entre 20 y 20 déce	
Tabla 18 Datos con frecuencia de recolección entre 20 y 30 días	
Tabla 20.Matriz de Tiempo prueba mensual	
Tabla 21. Rutas optima prueba mensual.	
Tabla 22. Resumen tiempo total recorrido.	
Tabla 23. Costo total kilómetros recorridos	
Tabla 24. Costo total por litro de aceite recolectado	92
Tabla 25. Costos totales ruta optima de recolección	
Tabla 26. Costo optimó	93
LISTA DE FIGURAS	
Figura 1 Representación gráfica modelo VRP	23
Figura 2 Clasificación de las técnicas heurísticas	
Figura 4 Algoritmo de Ramificación y Acotamiento	
Figura 5 Planta de Almacenamiento y Tratamiento Biogras¡Error! Marca	
no definido.	
Figura 6 Vehículo utilizado en el proceso de recolección de AVUiEr	ror!
Marcador no definido.	
Figura 7 Latitud y longitud en Google Maps ¡Error! Marcador no defin	
Figura 8 Servidor de rutas	
Figura 10 Recorrido ruta optima prueba semanal ¡Error! Marcado	
definido.	. 110
Figura 11 Recorrido ruta optima prueba quincenal ¡Error! Marcado	r no
definido.	
Figura 12 Recorrido ruta optima mensual ¡Error! Marcador no defin	ido.

LISTA DE ANEXOS

)2
10
11
38
1

DEDICATORIA

A toda mi familia, quien con su apoyo y su amor me acompañaron y me animaron en todo mi proceso de formación.

AGRADECIMIENTOS

Primeramente, a Dios quien es el que me guio y me fortaleció cada día a seguir adelante y culminar este proyecto.

A mis padres Héctor Bernal y Jacqueline Carvajal quienes me han apoyado desde el inicio de mi formación universitaria, me han guiado y me han aconsejado en todas las decisiones que he tomado y siempre me han animado a seguir adelante a pesar de las adversidades.

A mis hermanos Andrea Bernal y Julio Bernal quienes siempre me han apoyado y animado a seguir y cumplir mis metas propuestas.

A mi director, el profesor Dionisio Malagón quien con su paciencia, orientación, motivación y aporte de su conocimiento me fue posible la culminación de este proyecto, así como también el gusto por la investigación.

Al profesor Henry Cortes, quien me dio su dirección y orientación para la construcción de este proyecto y además me dio todo su apoyo y ánimo para seguir adelante y culminar este proyecto.

A Paul León, el autor de la aplicación VRP Solver quien me ayudó y colaboró en la realización de la programación de este proyecto a pesar de la distancia.

A la universidad ECCI, quien me brindo las aulas de la institución y la formación de todos los docentes que durante el transcurso de la carrera me enseñaron y me llenaron de conocimiento para cumplir mi meta de convertirme en ingeniera industrial.

RESUMEN

El aceite vegetal usado, está clasificado como un residuo peligroso en Colombia, por lo que existe una normatividad que reglamenta la disposición final adecuada del mismo. Sin embargo, dentro de los residuos peligrosos, el aceite vegetal usado es el único que se puede tratar y reutilizar, sometiéndose mediante medios físicos, químicos o biológicos a un proceso de limpieza y tratamiento para la creación de productos ecológicos, entre ellos el biodiesel. Además, su correcta disposición permite disminuir impactos desfavorables al medio ambiente especialmente en los recursos hídricos.

Es por ello por lo que actualmente se han constituido empresas gestoras en Colombia, encargadas de la recolección y tratamiento del aceite vegetal usado en los puntos identificados como generadores según el Ministerio de Medio Ambiente. Sin embargo, las empresas gestoras en el proceso de recolección y transformación deben asumir altos costos logísticos en la programación de rutas para efectuar el proceso de recolección.

Por lo tanto, en la presente investigación se propuso el diseño de un modelo matemático basado en el problema de optimización combinatoria VRP (Vehicule Routing Problem) que permitió optimizar los costos operacionales implícitos en la recolección de aceite vegetal usado en Bogotá. A partir de la optimización se generaron rutas de recolección semanal, quincenal y mensual. Adicionalmente, se halló un costo óptimo del litro de aceite de \$1.658 para la recolección de aceite vegetal usado en Bogotá. Esta información es útil para las empresas gestoras ya que contribuye con la disminución de costos en la materia prima para la producción de biodiesel en Bogotá-región.

CAPÍTULO 1

1. INTRODUCCIÓN

El aceite vegetal usado se considera un residuo líquido que tiene su origen en un compuesto orgánico (Restrepo, 2012), el cual se convierte en un producto desnaturalizado por su utilización con altas temperaturas cambiando sus características organolépticas y fisicoquímicas del producto original, produciendo modificaciones en la composición de los ácidos grasos saturados que lo forman(Agüero, García, & Catalán, 2015). El aceite vegetal usado se obtiene de las plantas generadoras de los comúnmente conocidos como aceites domésticos(Valenzuela & Morgado, 2005).

A nivel mundial el aceite usado, es el segundo liquido más contaminante que genera mayores volúmenes luego de las aguas residuales (Preciado, 2017). El proceso de biodegradación y disolución de los aceites es muy lento, pues demandan entre 10 y 15 años para su eliminación (William et al., 2017). Es por ello por lo que los aceites al ser vertidos en el agua y en el suelo causan efectos perjudiciales para el ambiente y la salud humana (Valenzuela & Morgado, 2005). Según estudios realizados se ha demostrado que concentraciones de aceite usado en agua de 1 mg/l la convierten en no acta para el consumo humano, pero concentraciones de 0,01 mg/l ya alteran el sabor (Muñoz Ciro, Montoya Escobar, & Muñoz Rivera, 2017).

Sin embargo, el aceite vegetal usado es un insumo adecuado que logra diversificar la canasta energética de un país y colabora para un desempeño ambientalmente sostenible, ya que es considerado la principal materia prima para la producción del biodiesel(Restrepo, 2012). Es por ello por lo que, en Colombia, por medio de la Resolución 0316 del 2018 se reglamentó la disposición final del aceite, estableciendo las pautas para los generadores de aceite, así como también a las empresas gestoras quienes son las encargadas de recolectarlo, transportarlo y tratarlo para la producción de Biodiesel(Ministerio Ambiente y Desarrollo Sostenible, 2018b).

Por lo tanto, con el fin de disminuir la problemática ambiental del aceite vegetal usado y contribuir al desarrollo sostenible del país, en el presente trabajo se propone un modelo matemático que permite optimizar la ruta de recolección de aceite vegetal usado en la ciudad de Bogotá, la cual será de utilidad para las empresas gestoras, permitiendo a partir de la optimización de los costos operacionales y la generación de rutas estratégicas, recolectar la mayor cantidad de aceite en la ciudad ya que solo en Bogotá el consumo de aceite vegetal es de 720.000 litros al mes(Casallas, 2017).

1.1 Problema de Investigación

1.1.1 Descripción del problema

El aceite vegetal usado ha generado un impacto negativo en el ambiente, especialmente en los recursos hídricos y el suelo, ya que el aceite al ser vertido en los cuerpos de agua superficial afecta la capacidad de intercambio de oxígeno de esta (Ministerio Ambiente y Desarrollo Sostenible, 2018b). De la misma manera, el vertimiento en el suelo puede causar: erosión, pérdidas de fertilidad y destrucción de hábitats (Ministerio Ambiente y Desarrollo Sostenible, 2018a). Por otro lado, también puede afectar la salud humana, ya que el aceite reutilizado tres veces o más es potencialmente cancerígeno por la producción de acrilamidas (Restrepo, 2012). Adicionalmente, a nivel urbano, al ser vertidos en el sistema de alcantarillado se obstruyen las redes y se ocasionan dificultades en la disposición y sobrecostos a las Plantas de Tratamiento (Ministerio Ambiente y Desarrollo Sostenible, 2018a).

Sin embargo, existen alternativas para el aprovechamiento del aceite vegetal usado, por ejemplo, en la producción de biocombustibles como el biodiesel(López et al., 2015). Esta técnica se ha venido estudiando desde el primer tercio del siglo XX, y en la actualidad se presenta como una solución atractiva para los problemas de la reutilización y el vertimiento indiscriminado del aceite residual de origen alimentario (Gandón Hernandez, Torres Baratute,

& Garcia Diaz, 2017). Sin duda, es una alternativa para el uso del petróleo, ya que se abre la posibilidad de convertir grasas y aceites usados en biodiesel, el cual es un combustible renovable con múltiples beneficios ambientales y económicos (Torossi Baudino, 2006)

Según datos de Asograsas, en 2016 en Colombia el consumo aparente de aceite vegetal comestible fue de 621.000 toneladas(Ministerio Ambiente y Desarrollo Sostenible, 2018a). No se cuenta con un estimado de la cantidad de aceite residual generado a nivel nacional. Sin embargo, en Bogotá el volumen generado de este residuo supera los 720.000 litros mensuales (Casallas Olaya, 2017).

1.1.2 Formulación del problema

¿Cuál es el costo de recolección de aceite vegetal usado al ser optimizada la ruta de recolección en Bogotá?

1.2 Justificación

A nivel mundial, entidades como la ONU, a través de los 17 Objetivos de Desarrollo Sostenible (ONU, 2015), plantea la necesidad de que los gobiernos adopten medidas tendientes a mejorar la calidad de vida de las personas. Dentro de dichos objetivos se encuentran el agua limpia y saneamiento (6), producción y consumo responsables (12) y vida de ecosistemas terrestres (15) que de manera directa se ven impactados por el manejo inadecuado del aceite vegetal usado. Solo hasta el año 2018 en Colombia a través de la Resolución 0316 del Ministerio del Medio Ambiente se establecen las pautas y condiciones para la gestión de los aceites de cocina usados: toda persona, industria, comercio y servicios que genere aceite de cocina usado, y toda persona que sea gestor del mismo deberán inscribirse ante la autoridad ambiental competente en el área donde se realizará la actividad de generación, recolección, tratamiento y/o aprovechamiento del aceite (Ministerio Ambiente

y Desarrollo Sostenible, 2018a). Esto es un punto de partida importante en el acceso a la información de todos los actores, y en especial generadores, que solo en Bogotá superan los 17.000 puntos y que generan aproximadamente 720.172 litros al mes (Casallas Olaya, 2017).

Basados en esta cantidad de aceite generado, se podría planificar la recolección en cada uno de los puntos generadores para ser usado como materia prima para la producción de biodiesel. Se ha reportado que por cada 1.2 litros de aceite vegetal usado se puede producir un litro de Biodiesel (Fontanilla, 2012), con lo cual se lograría utilizar el aceite producido y ser integrado en un proceso industrial. Además, se podrían reducir las emisiones de gases de efecto invernadero del sector transporte en un 8%, ya que por cada litro de aceite vegetal usado que se convierte en biodiesel se le entrega una reducción de 2.5 kg de CO₂ al ambiente (Ministerio Ambiente y Desarrollo Sostenible, 2018a).

Sin embargo, realizar la recolección de aceite vegetal usado es una ardua y compleja tarea para las empresas gestoras, ya que se ven implicados altos costos asociados a la logística para la programación de rutas. Es por ello que la presente investigación se enfoca en el diseño de un modelo matemático para optimizar los costos operacionales que se presentan en la elaboración de la ruta de recolección de aceite vegetal usado en Bogotá, basado en el modelo clásico del problema de ruteo vehicular conocido como VRP (*vehicle route problem*), que describe el diseño de rutas donde a partir de un depósito del que sale cada vehículo y al que tiene que regresar, en donde debe visitar una sola vez a los clientes para satisfacer su demanda conocida, sin violar las restricciones de capacidad de carga de los vehículos, distancia máxima recorrida por éstos, y respetando el horario de trabajo logrando así cumplir su objetivo principal de buscar el costo mínimo al realizar la ruta de recolección(El-Sherbeny, 2010).

1.3 Objetivos

1.3.1 Objetivo general

Optimizar los costos operacionales en la recolección de aceite vegetal usado en Bogotá.

1.3.2 Objetivos específicos

- 1. Identificar las variables más importantes asociadas a las rutas de recolección de aceite vegetal usado.
- 2. Desarrollar un modelo matemático para minimizar los costos de operación en la recolección de aceite vegetal usado.
- 3. Optimizar el modelo matemático planteado aplicando un algoritmo de optimización.

CAPÍTULO 2

2. MARCO TEORICO

Actualmente, las compañías han utilizado la logística como proceso estratégico para mantener su actividad y garantizar la eficiencia de sus operaciones en el mercado, lo que además les ha permitido tener ventajas competitivas asociadas a los costos y a la diferenciación(Ulloa Murcia, 2015). Sin embargo, el mercado exige cada día compañías fuertes y eficientes que puedan lidiar y controlar el sistema de recolección y distribución de productos, el cual presenta una complejidad debido a los múltiples destinos servidos por una red de distribución para llegar a un depósito(Gonzalez Alzate & Gonzalez Reyes, 2013). Es por ello por lo que se han diseñado herramientas computacionales, basadas en la optimización con el fin de encontrar soluciones óptimas a problemas complejos de gran tamaño, los cuales han permitido a las compañías solucionar los problemas de distribución y recolección logrando ser más eficientes en el mercado(Bermeo Muñoz & Calderón Sotero, 2009). Basado en lo anterior, en el presente capitulo se realiza una introducción y revisión a la literatura sobre todas las herramientas computacionales y modelos asociados a la optimización del transporte, lo que permitirá conocer el enfoque para lograr la optimización de la ruta de recolección de aceite vegetal usado en Bogotá.

2.1 Optimización

La optimización consiste en la búsqueda de valores para unas determinadas variables de forma que, cumpliendo un conjunto de requisitos, representados mediante ecuaciones y/o inecuaciones algebraicas, proporcionan el mejor valor posible para una función que es utilizada para medir el rendimiento del sistema que se estudió (Kampf, 2018). La optimización se logra mediante estrategias matemáticas conocidas como métodos, los cuales sirven como una

herramienta para la toma de decisiones que maximizan o minimizan una función objetivo (Belavenutti, Romero, & Diaz-Balteiro, 2018).

Los modelos de optimización algebraica se componen de los siguientes tres elementos:

- Función Objetivo Es la medida cuantitativa del funcionamiento del sistema que se desea optimizar (maximizar o minimizar) (Ramos, 1993).
- Variables Representan las decisiones que se pueden tomar para afectar el valor de la función objetivo(Sanchez, Ferrer, Barquin, Linares, & Ramos, 2010). Las variables se pueden clasificar en variables independientes o principales y variables independientes o auxiliares, aunque matemáticamente todas son iguales(Sanchez et al., 2010).
- Restricciones Representan el conjunto de relaciones expresadas mediante ecuaciones o inecuaciones que ciertas variables están obligadas a satisfacer(Feitó Cespón, Cespón Castro, & Rubio Rodríguez, 2016).

2.2 Optimización Combinatoria

La optimización combinatoria es una rama de la optimización de las matemáticas aplicadas, en donde el óptimo se encuentra a partir de la enumeración de todas las soluciones posibles(Sanchez Garcia, 2005). Los algoritmos de optimización combinatoria resuelven problemas que se creen complejos, debido al gran tamaño de exploración de soluciones que puede tener, mediante la reducción del espacio de búsqueda y la exploración eficiente de la solución óptima(Castro, Castro, & Saldarriaga, 2005).

Un problema de optimización combinatoria puede ser uni-objetivo, cuando solo se construye una función objetivo en el espacio de configuraciones, y multi-objetivo cuando se construye más de una función objetivo(Ocaña & Ramirez, 2012). Los problemas de optimización combinatoria no presentan mucha dificultad en encontrar la solución óptima, pero si pueden demorar bastante

tiempo para ello, es por eso por lo que se necesitan de otros métodos para encontrar la solución en menor tiempo(Sanchez Garcia, 2005).

2.3 Modelo Matemático

Es un patrón teórico o experimental que permite interpretar mediante métodos matemáticos fenómenos reales o problemas técnicos para la toma de decisiones, cuyos resultados sean útiles y tangibles (Reddi, Elgowainy, & Sutherland, 2014). Además, permite organizar, estructurar y analizar datos para obtener un resultado a partir del uso de algoritmos (Seyyedhasani & Dvorak, 2018).

Es importante aclarar que un modelo matemático es una aproximación de un sistema real, por consiguiente, todas las variables pueden no estar incluidas en él ya que cualquier procedimiento aproximado está sujeto a algún error(Chediak Pinzón, 2013). La descripción de un sistema mediante un modelo matemático hace posible analizar y ensayar diferentes alternativas sin interrumpir el sistema real, además permite hacer más explícito el problema permitiendo aclarar las variables más importantes y los datos necesarios para su programación(Feitó Cespón et al., 2016)

2.4 Etapas en el desarrollo de un modelo Matemático

2.4.1 Identificación del problema

Esta etapa consiste en la recolección y el análisis de la información relevante para la construcción del problema(Sanchez et al., 2010). El proceso de identificación del problema es crucial, pues afectara de forma significativa la relevancia de las conclusiones del modelo.

La primera actividad a realizar en esta etapa es el estudio del sistema relevante y el desarrollo de un resumen bien definido del problema que será analizado(Ramos, 1993). Además, en la definición del problema es fundamental determinar los objetivos apropiados, las restricciones sobre lo que es posible hacer, los diferentes cursos de acción posibles, los límites de tiempo para tomar una decisión entre otros(Hillier & Lieberman, 2014).

2.4.2 Especificación Matemática y Formulación

En esta etapa se realiza la escritura matemática definiendo sus variables, ecuaciones, su función objetivo y sus parámetros así mismo se analiza el tamaño del problema, la estructura de la matriz y el tipo de modelo a utilizar(Ramos, 1993).

Un paso importante en la formulación del modelo es la construcción de la función objetivo. Esta tarea requiere desarrollar una medida cuantitativa del desempeño asociado a cada objetivo, que el tomador de decisiones identifica cuando define el problema(Shamblin, 1982). En la etapa del desarrollo de la formulación es recomendable iniciar con una versión muy sencilla, y avanzar de manera evolutiva hacia paradigmas más elaborados que reflejen mejor la complejidad del problema real(Hillier & Lieberman, 2014).

2.4.3 Resolución

En esta etapa se trata de implantar un algoritmo de solución numérico óptimo o cuasi óptimo. Puede ser un algoritmo de propósito general (método simplex) o específico (Feitó Cespón et al., 2016). En la resolución del modelo matemático, es importante tener en cuenta que, si el modelo está bien formulado y verificado, la solución debe tender a constituirse en una buena aproximación de un curso de acción ideal en la realidad. Teniendo en cuenta que las soluciones solo pueden ser óptimas respecto al modelo planteado(Chediak Pinzón, 2013).

2.4.4 Verificación y validación

En esta etapa se realiza la eliminación de errores de codificación, logrando que el modelo logre realizar lo que se espera, por lo que es necesario comprobar la validez de las simplificaciones a partir de los resultados obtenidos(Rivera Cubides, 2016). Es fundamental que antes de usarse un modelo sea probado de manera exhaustiva para identificar y corregir la mayor cantidad posible de fallas, con el tiempo después de una larga serie de modelos mejorados, el modelo producirá resultados razonablemente válidos(Hillier & Lieberman, 2014).

2.4.5 Análisis de los resultados

En esta etapa se proponen las posibles soluciones de acuerdo a los resultados obtenidos del modelo, así mismo permite conocer en detalle el comportamiento del modelo al hacer un análisis de sensibilidad en los parámetros de entrada, estudiar los diferentes escenarios posibles, así como detectar las soluciones alternativas que sean más atractivas(Adarme, Fontilla, & Arango, 2011).

2.5 Técnicas de Optimización

2.5.1 Programación Lineal

La programación lineal es un medio matemático que permite asignar una cantidad fija de recursos a la satisfacción de varias demandas en tal forma que mientras se optimiza algún objetivo se satisfacen otras condiciones definidas(Shamblin, 1982). Como lo sugiere el nombre de esta técnica todas las relaciones deben ser lineales. Realmente la programación lineal es la aplicación del algebra matricial a la solución de estas ecuaciones, mediante la utilización de algunas reglas especiales para asegurar que la solución satisface todas las condiciones necesarias, y aun permite obtener los mejores resultados con respecto al objetivo(Hillier & Lieberman, 2014). Generalmente la labor más difícil de la programación lineal es la definición y formulación del problema, de forma que pueda desarrollarse y producir un objetivo deseable para poder optimizarlo, lo cual implica imaginación tanto del problema como de la técnica de solución(Delgado Hidalgo, Hernán, & Díaz, 2010).

2.5.2 Programación Entera

La programación entera es aquella que contiene restricciones y una función objetivo idénticas a las formuladas por planeación lineal, la diferencia es que en una o más de las variables de decisión se debe tomar un valor entero en la solución final(Ramos, 1993). Los algoritmos de programación entera se basan en el aprovechamiento del gran éxito computacional de la programación lineal(Chediak Pinzón, 2013).

2.5.3 Programación Dinámica

La programación dinámica es la técnica más adecuada para la resolución de problemas que requieren decisiones interrelacionadas, es decir, las decisiones que se deben tomar en forma secuencial y las que influyen en el futuro. (Hillier & Lieberman, 2014). Los conceptos desarrollados por Richard Belman permiten la optimización parcial de una parte de la secuencia y luego relacionan las unidades optimizadas con la siguiente en línea, hasta que toda la secuencia quede optimizada (Shamblin, 1982). La programación dinámica divide el problema en un conjunto de problemas más pequeños y fáciles de resolver, y luego reagrupa los resultados de análisis, lo que se denomina descomposición (Camac Gutierrez, 1994).

2.5.4 Programación no lineal

La programación no lineal es el conjunto de métodos utilizados para optimizar una función objetivo, que está sujeta a una serie de restricciones en las que una o más de las variables incluidas no es lineal, es decir, no existe una relación directa y proporcional entre las variables que intervienen(Hillier & Lieberman, 2010). En la programación no lineal no siempre la solución óptima se encuentra en un punto extremo de la región de factibilidad, hay casos en los que el óptimo puede encontrarse en la interior de la región factible(Castillo, Conejo, & Pedregal, 2002).

2.6 Modelos de Optimización

Los modelos de optimización están diseñados como herramientas para la toma de decisiones que maximizan o minimizan una función objetivo a partir de un método de optimización que está sometido a un conjunto de variables y restricciones (Ulloa Murcia, 2015). Los modelos de optimización constituyen en la actualidad una parte de las matemáticas que cuenta con un gran número de aplicaciones (Chediak Pinzón, 2013). Muchos investigadores de diferentes áreas del saber buscan constantemente la manera de hacer funcionar los sistemas, por lo que en su búsqueda encuentran los modelos de optimización aptos y eficientes para la solución de problemas como: planificación de la producción, transporte de mercancías, asignación de tripulaciones, gestión de inventarios, de decisiones en ambientes de certidumbres, tomas incertidumbres y conflictos entre otros(Castillo et al., 2002). Distintos modelos de optimización se pueden encontrar en la literatura. Uno de los modelos de optimización, que tiene que ver con el ruteo, es el modelo del problema de enrutamiento de vehículos (VRP, vehicle route problem).

El VRP se ha aplicado extensivamente al dominio del transporte y la logística para resolver el problema genérico de satisfacer solicitudes de clientes dispersos espacialmente utilizando una flota de vehículos (Bouyahia, Haddad, Haddad, Nait, & Moh, 2018). Otro caso es el del modelo VRPTW (vehicle routing problem with Time Windows) el cual es factible y eficaz para resolver el problema de enrutamiento con ventanas de tiempo (Mazzuco et al., 2018), la factibilidad del modelamiento es tal que se puede aplicar incluso para rutas de vehículos eléctricos que añaden la variable del tiempo de recarga de energía, el cual es conocido como GVRP (Green Vehicle Routing Problem) (Feero, Paolucci, & Robba, 2018). Otros modelos como el ACO (Ant Colony Optimization) es usado para rutas de flotillas enteras de vehículos, e incluso aeronaves autónomas, en los cuales son programados y optimizados basándose en los principios de modelamiento (Yan, 2018), logrando determinar las rutas óptimas lo que permite minimizar el costo total dentro de un marco de tiempo razonable y de manera eficiente (Huang, Blazquez, Huang, Paredes-Belmar, & Latorre-Nuñez, 2018).

2.7 Modelo del Problema de Enrutamiento de Vehículos (VRP)

El origen del VRP se encuentra desde 1959 y es introducido por Dantzing y Ramser (Laporte, Toth, & Vigo, 2013), en donde representaron una aplicación real relacionada con la entrega de gasolina a las estaciones de servicio y propusieron la formulación matemática a ese problema(Daza, Montoya, & Narducci, 2009). Dantzing y Ramser se basaron en el problema del Agente viajero en donde un vendedor debe visitar una serie de clientes y luego volver a su punto de origen(Hernandez Ortiz, 2016).

El modelo clásico del problema de ruteo vehicular conocido como VRP es un problema de optimización combinatoria complejo, el cual parte de un depósito y cuenta con una flota de vehículos que debe atender un conjunto de clientes dispersos en una zona geográfica(Toth & Vigo, 2000), como se muestra en la Figura 1.

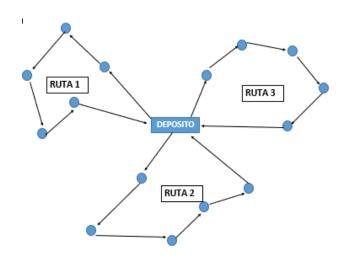


Figura 1 Representación gráfica modelo VRP.

Fuente: Elaboración propia autor.

En su forma general, el objetivo del VRP es diseñar un conjunto de rutas de costo mínimo que sirvan a varios lugares, geográficamente dispersos, y que cumplan con las restricciones específicas del problema (Sepúlveda, Escobar,

& Adarme-Jaimes, 2014). Para el diseño de rutas se derivan modelos VRP que atienden diferentes necesidades, e incluyen diversas restricciones o condiciones operativas impuestas por la dinámica de los mercados (Escobar, Linfati, & Jaimes, 2015). El VRP es un método matemático de gran complejidad, debido a que el número de soluciones crece exponencialmente de acuerdo con el número de nodos, que se representan por los clientes o depósitos (Toth & Vigo, 2000).

2.7.1 Características y elementos del VRP

Para el VRP se tienen en cuenta las siguientes características:

- Tiene un único depósito.
- El depósito cuenta con una flota de vehículos homogénea o heterogénea.
- Atiende una serie de clientes que están dispersos en una zona geográfica.
- Las demandas de los clientes son conocidas.
- Las rutas se inician y terminan en el depósito.
- Los vehículos tienen una capacidad máxima que no se puede exceder.
- Los clientes serán visitados solo una vez en su recorrido.

El modelo VRP cuenta con los siguientes elementos que son fundamentales para su desarrollo:

- La red de transporte: La red se considera como el grafo en donde los arcos representan las vías y los vértices corresponden con los nodos de la red, que es donde se encuentran los clientes y el depósito. A los arcos se les asocia un costo, el cual puede representarse por la longitud de la distancia, el tiempo de viaje o el costo monetario de realizar el recorrido(Medr & Santana, 2017).
- Flota de vehículos: En el VRP se puede conocer el número de vehículos o puede ser una variable de decisión. En el caso que todos

los vehículos comparten las mismas características, se conoce como flota homogénea, pero cuando hay alguna diferencia entre ellos se conoce como flota heterogénea(Bullnheimer, Hartl, & Strauss, 1999). Normalmente en el VRP cada vehículo realiza una sola ruta durante el horizonte del problema, en el cual tendrá que ir visitando a los clientes que hagan parte de la ruta además se puede asociar un costo fijo por el uso de los vehículos o un costo variable proporcional a la distancia recorrido(Ocaña & Ramirez, 2012).

- Clientes o proveedores: Los clientes o proveedores se representan como los nodos que cuenta con una demanda conocida que puede estar representada por un producto o servicio a realizar. Esta demanda es recogida por el vehículo asignado en la ruta con el fin de ser transportada hasta el depósito(Hillier & Lieberman, 2014).
- Deposito central: El depósito se representa como el nodo principal, del cual inicia la ruta asignada a cada vehículo y en donde debe terminar para el descargue del producto o la demanda recolectada(Laporte et al., 2013).
- Ruta solución: El problema del VRP pretende determinar la ruta para cada uno de los vehículos, logrando que se cumplan todas las restricciones y se logre cumplir la función objetivo, se suele tomar como objetivo la minimización de los costes, del número de vehículos totales, del tiempo total del transporte, de la distancia recorrida entre otros(Rocha, Gonzalez, & Orjueña, 2011). En general en el VRP se asume que un vehículo, durante el tiempo de planificación solo realizara una ruta, sin embargo, hay variantes del problema en las que un mismo vehículo puede participar en más de una ruta(El-Sherbeny, 2010).

Debido a la complejidad del modelo VRP, se han propuesto diferentes heurísticas que permiten generar aproximaciones a la solución óptima(Hernandez Ortiz, 2016).

2.8 Heurísticas para la solución del problema VRP

Las técnicas heurísticas son un conjunto de procedimientos que permiten resolver un problema en donde se explora el espacio de búsqueda de una forma limitada generando así soluciones aceptables en un tiempo corto de ejecución(Delgado Hidalgo et al., 2010). Las heurísticas se clasifican en tres métodos como se puede apreciar en la Figura 2. Entre los métodos constructivos se encuentran los algoritmos de los ahorros y las heurísticas de inserción(Rocha et al., 2011).

Figura 2 Clasificación de las técnicas heurísticas.

Fuente: (Rocha et al., 2011)

2.8.1 Modelo de los Ahorros (Savings Criterion – Clarke and Wright 1958)

El algoritmo de ahorros de Clarke and Wright es una de las heurísticas del VRP más conocida(Toth & Vigo, 2000). Este algoritmo se aplica generalmente en los problemas en donde se cuenta con un depósito central y un número de vehículos no limitado, para atender la demanda conocida de un numero n de clientes, con el fin de encontrar las rutas que deben realizar dichos vehículos logrando satisfacer la demanda con el costo mínimo(Bermeo Muñoz & Calderón Sotero, 2009). El depósito se denota como 0 y los clientes van desde 1 hasta n. Los costes de ir desde el depósito a cada cliente (Coj) y los costes

de desplazamiento entre cada pareja de clientes (C_{ij}) son conocidos y simétricos(Chica & Cord, 2009). Este algoritmo permite obtener muy buenos resultados mediante una exploración limitada del espacio de búsqueda, siendo su aplicación bastante simple y con un tiempo de resolución muy mínimo(Medr & Santana, 2017).

2.8.2 Heurísticas de Inserción

Las heurísticas de inserción crean soluciones mediante sucesivas inserciones de clientes en las rutas, en cada interacción se tiene una solución parcial cuyas rutas solo visitan un subconjunto de clientes y luego se selecciona un cliente no visitado para insertarlo en la última ruta creada(Castillo et al., 2002). Entre los métodos de dos fases se encuentran el algoritmo del barrido, el algoritmo de ramificación y acotamiento, el algoritmo de los pétalos y los procedimientos de búsqueda local(Castro et al., 2005).

2.8.3 Algoritmo de Barrido

Este algoritmo consiste inicialmente en hacer agrupamientos de clientes girando una semirrecta con origen en el depósito e incorporando los clientes barridos por dicha semirrecta hasta violar la restricción de capacidad(Olivera, 2004). Este algoritmo puede aplicarse en problemas planos, en los que cada nodo se corresponde con un punto en el plano y las distancias entre ellos se definen como la distancia euclidiana(Toro, Escobar, & Granada, 2015).

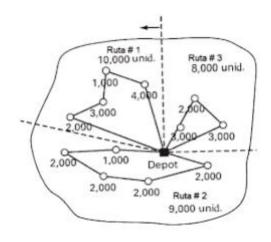


Figura 3 Ejemplo del algoritmo del barrido.

Fuente: (Medr & Santana, 2017)

Como se muestra en la Figura 3 se evidencia el proceso de formación de las diferentes rutas, en donde se supone una capacidad de 10.000 unidades para los vehículos y se va barriendo hasta alcanzar la capacidad máxima de los vehículos, en este caso cuando no se cumple la restricción de capacidad, se realiza una separación y forma una ruta(Medr & Santana, 2017).

2.8.4 Algoritmo de Ramificación y Acotamiento (Branch and Bound)

El algoritmo de ramificación y acotamiento pertenece a una variedad de estrategias de partición para resolver modelos de optimización global. Este algoritmo se encarga de mantener un límite inferior y superior del valor óptimo de la función objetivo(Mediorreal, 2014). Este algoritmo consiste en ir construyendo un árbol con todas las posibles soluciones, pero cuando una rama ya no es la mejor se deja de construir el árbol por esa rama, con el fin de ahorrar recursos computacionales sin necesidad de explorar todas las posibles soluciones y así encontrar la solución óptima, así como se muestra en la Figura 4 (Bermeo Muñoz & Calderón Sotero, 2009). En el caso del VRP se debe tener una solución inicial con una distancia total recorrida asociada y así realizar el árbol cortando las ramas que superen esa distancia(Sanchez et al., 2010).

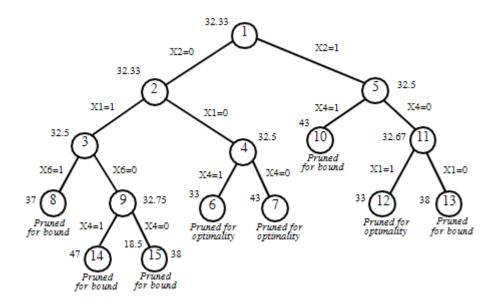


Figura 4 Algoritmo de Ramificación y Acotamiento.

Fuente: (Bermeo Muñoz & Calderón Sotero, 2009)

2.8.5 Algoritmo de los pétalos

Este algoritmo es una extensión del algoritmo del barrido y se puede utilizar para generar varias rutas llamadas pétalos con el fin de hacer una selección final resolviendo un problema de partición(Feitó Cespón et al., 2016). Este algoritmo dispone de un conjunto de rutas R en la que cada cliente es visitado por varias rutas y se debe seleccionar un subconjunto de rutas R que visite exactamente una vez cada cliente(Toro et al., 2015).

2.8.6 Procedimientos de Búsqueda Local

Los procedimientos de búsqueda local se utilizan para mejorar una solución ya obtenida. En estos procedimientos se define un conjunto de soluciones vecinas y parte de una solución primaria para luego reemplazarla por una solución vecina con menor costo, el procedimiento se repite hasta que no se pueda mejorar la solución(Rocha et al., 2011). Los procedimientos de búsqueda local tienen tres ventajas importantes a diferencia de los otros: son ahorrativos ya que no usan tanta memoria porque no almacenan la secuencia de los estados; razonables, porque ofrecen soluciones posibles cuando el espacio de estados

es infinito y es óptimo, porque es capaz de encontrar el mejor estado en base a su función objetivo(Castillo Patarroyo, 2012).

2.11 MARCO CONCEPTUAL

Dentro del marco conceptual se encuentran conceptos fundamentales para el desarrollo del modelo de optimización enfocado en las rutas de recolección del Aceite Vegetal Usado.

2.11.1 Aceite Vegetal Usado (AVU)

Son Aceites que han sufrido un tratamiento térmico de desnaturalización en su utilización, cambiando así las características fisicoquímicas del producto de origen, y que provienen de todo establecimiento que genere en forma continua o discontinua residuos de este tipo(Preciado, 2017).

2.11.2 Acopiador

Persona natural o jurídica que cuenta con los permisos requeridos por la autoridad competente, y que en desarrollo de su actividad acopia y almacena temporalmente aceites vegetales de fritura usados provenientes de uno o varios establecimientos generadores(Schuchardt, Sercheli, & Matheus, 1998).

2.11.3 Biodiesel

Es un compuesto de ésteres mono-alcalinos de ácidos grasos de cadenas largas, derivados de aceites vegetales, o grasas animales denominado B100 y que cumple con los requerimientos de la ASTM D 6751 (*American Society for Testing and Materials*). El biodiesel (Ester metílico) se obtiene a través de un proceso industrial relativamente simple de transesterificación de lípidos. Tiene una viscosidad similar al diésel derivado del petróleo (Murcia Ordoñez, Chaves, & Rodríguez-pérez, 2013).

2.11.4 Disposición final

Utilización o aprovechamiento del aceite vegetal de fritura usado en procesos de sinergia de subproductos tales como producción de biocombustibles y jabones que cumplan con las normatividades y especificaciones técnicas, ambientales y de seguridad que existan o se impongan(Preciado, 2017).

2.11.5 Establecimiento generador

Lugar donde se realiza una actividad comercial, industrial o especial, generadora de residuos de aceite vegetal de fritura en el cual se evacúan continua o discontinuamente vertidos. Los mismos deben estar registrados como generadores ante la autoridad competente (Alcaldia de Bogota, 2003).

2.11.6 Gestor de residuos

Persona natural o jurídica que presta los servicios de recolección, transporte, tratamiento, aprovechamiento o disposición final de residuos de aceites vegetales de fritura usados dentro del marco de la gestión integral y cumpliendo con los requerimientos de la normatividad vigente (Fernando-navas & Echeverry-ibarra, 2012).

2.11.7 Logística Inversa

Proceso de retorno de las mercancías en la cadena de suministro por el que se recuperan y reciclan, envases, embalajes, residuos peligrosos, retornos de excesos de inventario, devoluciones de clientes, productos obsoletos e inventarios estacionales(González & González, 2015).

2.11.8 Planeación y Programación de Transporte

Especifica cómo, cuándo y dónde transportar los bienes. La planeación del transporte y la programación de las aplicaciones puede incluir restricciones de peso y medida, unión-en-tránsito, movimiento continuo, selección del modo o transportista, o planeación de la funcionalidad(Reyes, 2005).

2.11.9 Planificación de la Demanda

El proceso de pronosticar y manejar la demanda para productos y servicios hacia los usuarios finales, así como para miembros intermedios en la cadena de suministro(Pastor, 2013).

2.11.10 Ruta

Es la selección del camino o trayecto por el cual deberá ir determinado transportador y en el cual se realizarán las recolecciones de Aceite a los diferentes puntos generadores (Gonzalez Alzate & Gonzalez Reyes, 2013).

2.11.11 Ruteo

Es el proceso de selección vías en una red en la cual existe un tráfico de mercancía. Existen diferentes maneras de realizar este ruteo, y de la misma manera software que ayudan con este proceso. Se realiza además teniendo en cuenta distintos factores a considerar(Ramos, 1993).

2.12 MARCO LEGAL

Teniendo en cuenta que los aceites usados están clasificados como residuos peligrosos en Colombia, existe una normatividad que reglamenta la disposición final adecuada del mismo.

Sin embargo, dentro de los residuos peligrosos, el aceite usado es el único que se puede tratar y reutilizar, sometiéndose mediante medios físicos, químicos o biológicos a un proceso de limpieza de elementos tales como sedimentos, compuestos de cloro, metales pesados, solventes y otros elementos provenientes de aditivos y de usos originales por lo que sus generadores pueden venderlo a las empresas encargadas de tratarlo y de esta manera tener un aprovechamiento económico.

En Colombia a través de la historia, se han creado algunas resoluciones con el fin de reglamentar su uso y disposición con el fin de cuidar y preservar el medio ambiente:

Tabla 1. Normatividad Colombia aceite vegetal usado.

NORMA	AÑO	DESCRIPCIÓN
RESOLUCIÓN 415	1998	Por la cual se establecen los casos en los cuales se permite la combustión de los aceites de desecho y las condiciones técnicas para realizar la misma (Ministerio Ambiente y Desarrollo Sostenible, 2005).
RESOLUCIÓN 1188	2003	Por la cual se establecieron normas y procedimientos para la gestión en el Distrito Capital, de aceites lubricantes usados (Alcaldía de Bogotá, 2003.).
RESOLUCIÓN 2154	2012	Por la cual se establece el reglamento técnico sobre los requisitos sanitarios que deben cumplir los aceites y grasas de origen vegetal o animal que se procesen, envasen, almacenen, transporten, exporten, importen y/o comercialicen en el país, destinados para el consumo humano y se dictan otras disposiciones (Ministerio Ambiente y Desarrollo Sostenible, 2012).

RESOLUCIÓN 316	2018	El presente acto administrativo establece las disposiciones para la adecuada gestión de los Aceites de Cocina Usados
		(ACU) y aplica a los productores, distribuidores y comercializadores de
		aceites vegetales comestibles, generadores (industriales, comerciales y servicios) y gestores de ACU (Ministerio
		Ambiente y Desarrollo Sostenible, 2018).

Fuente: Elaboración propia

CAPÍTULO 3

3. MODELAMIENTO MATEMÁTICO

El presente capítulo está enfocado en el planteamiento de un modelo matemático que busca optimizar el proceso de recolección de aceite vegetal usado en la ciudad de Bogotá. Actualmente el proceso de recolección de aceite vegetal lo realizan las empresas gestoras quienes se encargan de recolectarlo, transportarlo y tratarlo para la producción de biodiesel. Por lo cual estas empresas realizan su proceso de planificación y programación de rutas en toda la ciudad de Bogotá, con el fin de recolectar la mayor cantidad de aceite posible.

En el presente capítulo se propone un modelo matemático enfocado en la empresa Biogras, la cual es una empresa gestora, de las más antiguas en la ciudad. Sin embargo, el modelo propuesto puede ser aplicado, con cambios en los valores de las variables, a otras empresas gestoras en la ciudad. Biogras es una empresa especializada en la recolección y reciclaje del aceite vegetal usado en Bogotá desde hace 5 años, la cual se encarga de prestar un servicio integral a sus clientes asegurando la correcta disposición del residuo, su traslado, almacenamiento y reciclado final.

Esta empresa permitió una visita para conocer su proceso de planificación y programación de rutas, en la cual se evidenció y comprobó que se realiza de forma manual sin utilizar ningún software de ruteo. Esta información de la empresa Biogras fue clave en el proceso de creación de este proyecto por lo que el modelo propuesto permitirá mejorar el proceso de recolección de estas compañías con el uso de la optimización y los modelos de programación que se expusieron en la revisión de la literatura expuestos en el capítulo anterior.

3.1 Elementos a considerar en el modelo matemático

Para el desarrollo del modelo matemático se tomaron en cuenta varios de los elementos fundamentales que intervienen en el modelo VRP así como también algunas variables que se asocian al proceso de recolección de aceite vegetal usado.

3.1.1 Depósito

El depósito es el punto de inicio de la ruta de donde saldrán los vehículos al inicio de la jornada y a donde deben retornar para descargar y almacenar el aceite recolectado al final de la jornada. El depósito se identifica como las empresas gestoras, quienes se encargan de almacenar y tratar el AVU para la producción de biocombustibles.

En este caso se realizó la programación contando como deposito a la empresa gestora Biogras, la cual cuenta con su planta de almacenamiento y tratamiento en la Cra. 18 A Bis # 58 - 78 Sur en la Zona Industrial de San Benito como se puede evidenciar en la Figura 5, la cual cuenta con una capacidad de almacenamiento superior a 280 toneladas y una capacidad de recepción y tratamiento diaria de 30 toneladas.

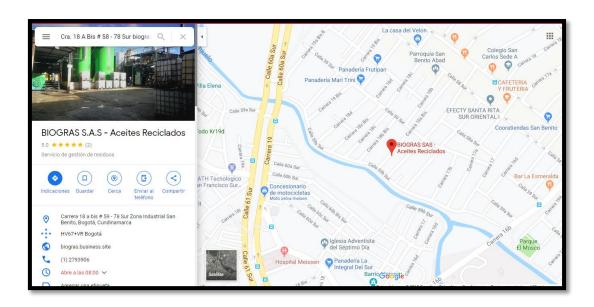


Figura 5. Ubicación geográfica de Biogras.

Fuente: Google maps

3.1.2 Puntos de Recolección

Los puntos de recolección, también llamados "generadores", corresponden a los establecimientos que tienen por actividad económica la elaboración de productos, preparación, cocinado y condimento de alimentos a partir del aceite vegetal.

Los puntos de recolección que alimentaron el modelo matemático se obtuvieron del trabajo realizado por Casallas (Casallas, 2017). A partir de la información suministrada por la Cámara de Comercio de Bogotá (CCB) bajo el código CIUU (Clasificación Industrial Internacional Uniforme) No. 561, se definieron en tres grupos de establecimientos generadores de aceite:

- **1. Comidas rápidas:** hamburguesería, arepas, empanadas, perros calientes, chorizos, pinchos entre otros.
- **2. Restaurantes:** asaderos, pollo broaster, fritanguerias restaurantes, entre otros.
- 3. Panaderías: cafetería, pastelería, panadería, bizcochos, postres.

De acuerdo con esta clasificación se identificaron y localizaron 17.008 establecimientos que se encuentran ubicados en 19 localidades de Bogotá como se evidencia en las tres primeras columnas de la Tabla 3.

Luego de conocer los establecimientos registrados en la ciudad de Bogotá, en el estudio realizado por Casallas se tomó una muestra la cual se determinó su tamaño por la ecuación reflejada en la Ecuación 1. De acuerdo con el tamaño de la muestra se seleccionaron los puntos, los cuales se utilizaron para realizar una encuesta sobre el consumo y disposición del aceite vegetal usado, la cual se puede evidenciar en el Anexo 1.

$$n = \frac{(k^2 * p * q * N)}{(e^2 * (N-1)) + k^2 * p * q)}$$

Ecuación 1. Ecuación para determinar el tamaño de la muestra.

Donde:

- N: Es el tamaño de la población o universo (número total de posibles encuestados).
- **k**: Es una constante que depende del nivel de confianza asignado. El que indica la probabilidad de que los resultados de la investigación sean ciertos, para el caso en particular el nivel de confianza empleado es del 95% de Z= 1.96
- **e:** Es el margen de error permitido. El que para el caso en particular ha sido del 5%.
- p: Proporción de individuos que poseen en la población la característica de estudio. Dado que este dato es desconocido se ha supuesto que p = q = 0.5 para garantizar como la opción más segura.
- q: Proporción de individuos que no poseen esa característica, es decir, es
 1-p.
 - n: Tamaño de la muestra (número de encuestas que se deben realizar).

Con la ecuación utilizada y teniendo en cuenta un nivel de confianza del 95%, en el estudio de Casallas (Casallas, 2017)se determinó realizar la encuesta a 1166 puntos distribuidos en las 19 localidades como se muestra en la columna 4 de la ¡Error! No se encuentra el origen de la referencia..

Teniendo en cuenta el tamaño de la muestra de los 1166 establecimientos identificados según el estudio de Casallas (Casallas, 2017), para la programación del modelo matemático propuesto y de acuerdo al tiempo de ejecución de la aplicación utilizada en el capítulo 4, se determinó tomar una muestra del total de clientes seleccionados previamente. Para conocer el número de clientes a programar, se utilizó la misma ecuación de la ¡Error! No se encuentra el origen de la referencia. manejando un nivel de confianza del 91% con el fin de obtener 82 datos como se puede evidenciar en la Tabla 2 al igual que en el trabajo realizado por (Araujo, Hamacher, & Scavarda, 2010) con el cual se puede tener un acercamiento de la programación de rutas de diversos puntos que se encuentran geográficamente ubicados y conocer el tiempo computacional que se requiere.

Tabla 2. Tamaño de la muestra modelo propuesto.

NC	91%
Z	1,69
Р	0,5
Q	0,5
N	1166
E	0,09
N	82

Fuente: Elaboración propia.

De acuerdo con el tamaño de la muestra obtenida, se realizó la distribución de los datos en las 19 localidades de Bogotá como se evidencia en la columna 5 de la Tabla 3, luego se realizó la selección de los datos que se programaron en el modelo matemático como se puede observar en el Anexo 2.

Tabla 3. Resultados de modelos.

Localidad	%	Establecimientos en Bogotá	Encuestas estudio Casallas	Optimización modelo	
1. Usaquén	6%	1133	67	5	
2. Chapinero	12%	1863	136	10	
3. Santafé	4%	788	52	4	
4. San Cristóbal	2%	455	29	2	
5. Usme	1%	114	12	1	
6. Tunjuelito	3%	456	33	2	
7. Bosa	3%	467	33	2	
8. Kennedy	9%	1730	104	7	
9. Fontibón	6%	979	68	5	
10. Engativá	11%	1665	132	9	
11. Suba	13%	1932	148	10	
12. Barrios Unidos	4%	1012	51	4	
13. Teusaquillo	4%	580	41	3	
14. Mártires	3%	648	40	3	
15. Antonio Nariño	4%	654	43	3	
16. Puente Aranda	9%	1417	106	7	
17. Candelaria	1%	258	13	1	
18. Rafael Uribe	4%	644	47	3	
19. Ciudad Bolívar	1%	213	11	1	
Total	100%	17008	1166	82	

Fuente: Elaboración propia.

3.1.3 Vehículo

Para el modelo matemático se consideró el uso de una flota de vehículos con una capacidad homogénea de 800 litros, similar a la que utiliza la empresa Biogras para realizar el proceso de recolección.

Figura 6 Vehículo tipo Van N300 Cargo. Fuente:(General Motors Colmotores, 2018)

El vehículo de la Figura 6, cuenta con las siguientes características:

Tipo de Combustible: Gasolina

Potencia: 81 hp.

Motor con cuatro cilindros.

Precio de compra: \$50.140.000

Capacidad de carga volumétrica :3,6 m³

Pasajeros:2

• Dimensiones: 4 m de largo,1,62 m de ancho,1,90 de altura.

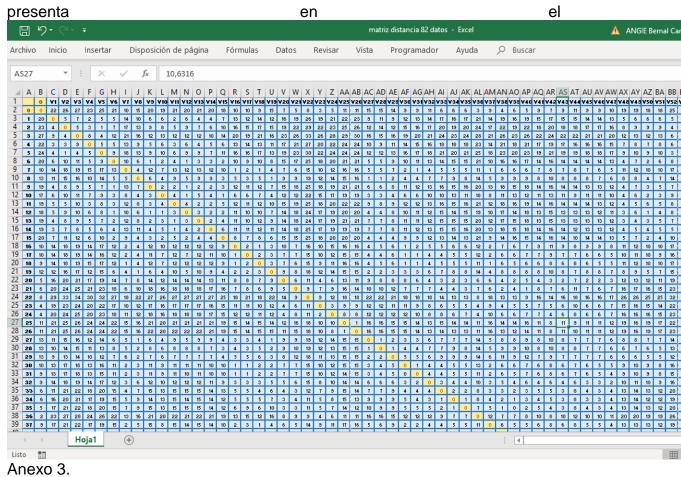
Peso Bruto Vehicular: 1950 kg.

3.1.4 Aceite por recolectar por punto

Para el modelo matemático se tuvo en cuenta la cantidad de aceite que se puede obtener de los puntos de recolección. La información de la cantidad de aceite generada en cada punto de recolección se obtuvo del estudio de prefactibilidad elaborado por (Casallas, 2017), mediante la encuesta que se puede evidenciar en el Anexo 1. Por medio de la cual se parametrizaron por segmentos algunas cantidades con el fin de obtener el promedio de aceite producido en cada punto de recolección, como se evidencia en la Tabla 4:

Tabla 4. Litros de aceite producido por punto de recolección.

Litros producidos por punto	Promedio de litros por punto
1-30 litros	16
31-50 litros	41
51-70 litros	61
71-90 litros	81
91-100 litros	96
101-150 litros	126


Fuente: Elaboración propia

La cantidad de aceite de acuerdo con el punto seleccionado se puede evidenciar en él Anexo 2.Datos programación modelo propuesto.

3.1.5 Distancia

Para el modelo matemático la distancia se determinó desde cada punto de recolección hasta el punto de origen (depósito). También se tuvo en cuenta la distancia entre los puntos de recolección que se encontraron en una ruta. En la programación del modelo, se utilizó la dirección de cada establecimiento que se obtuvo del estudio de prefactibilidad de (Casallas, 2017), luego se identificó por medio de Google Maps la información de longitud y latitud de cada punto.

Por medio del uso de la aplicación VRP Solver se realizó la determinación de la distancia de cada nodo al punto de origen por medio de un servidor de enrutamiento y de esta manera se obtuvo la matriz de enrutamiento que se

3.1.6 Costo del aceite recolectado

Para el modelo matemático se tuvo en cuenta el costo del litro de aceite recolectado debido a que este valor lo determina el punto generador. Acorde al trabajo realizado por Casallas (Casallas, 2017), el costo se organizó en un rango de valores por punto de acuerdo al resultado de las encuestas realizadas. En la Tabla 5 se puede observar que el menor costo por el que se puede comprar el aceite es de \$ 500 y el máximo valor es de \$2750.La asignación de los valores por punto se puede observar en el Anexo 2.

Tabla 5. Costo por litro de aceite recolectado.

Costo por litro	Promedio de costo por litro
500	500
\$ 501 - 1000	750
\$ 1001 - 1500	1250
\$ 1501 - 2000	1750
\$ 2001 - 2500	2250
\$ 2501 - 3000	2750

Fuente: Elaboración propia

3.1.7 Costo por Km recorrido

Para definir el costo del Kilómetro recorrido se utilizó información suministrada por el Ministerio de transporte por medio de la plataforma Sicetac 2.0 la cual puede acceder medio de la dirección se por http://sicetac.mintransporte.gov.co:8080/sicetacWeb/#!/ejecutar/costoseficientes. Esta plataforma permite calcular los costos eficientes para el transporte automotor de carga entre ciudades (Ministerio de Transporte, 2015) por lo que fue necesario realizar la adaptación para los recorridos dentro de la ciudad. Para ello fue necesario calcular el valor de movilización de carga por tonelada en Bogotá de \$23.310 y luego de contar con este dato se determinó el costo por Km teniendo en cuenta los porcentajes de participación de cada uno de los conceptos que se tuvieron en cuenta como se evidencia en la Tabla 6. Finalmente, el costo estimado por km en la ciudad de Bogotá es de \$ 3.468,49.

Tabla 6. Costos eficientes para calcular costo del kilómetro en Bogotá

Costo movilización de carga Bogotá (Km)

Tipo de Costo	Concepto	Valor por tonelada	Participación	Costo Km		
		\$		\$		
VARIABLE	Combustible	5.317,0	22,8%	1.212,81		
VARIABLE	Filtros	\$ 202,8	0,87%	\$ 1,76		
VARIABLE	Lavado y engrase	\$ 237,8	1,02%	\$ 2,43		
VARIABLE	Llantas	\$ 657,3	2,8%	\$ 18,54		
		\$,	\$		
VARIABLE	Lubricantes	338,0	1,5%	4,90		
VARIABLE	Mantenimiento y Reparaciones	\$ 1.599,1	6,9%	\$ 109,70		
VAINABLE	Comisiones y Factor	\$	0,570	\$		
OTRO	Prestacional	5.428,9	23,3%	1.264,39		
OTRO	Gastos de Administración	\$ 2.214,5	9,5%	\$ 210,37		
OTIC	7 (diffinition dolori	\$	0,070	\$		
OTRO	Imprevistos	345,0	1,5%	5,11		
OTRO	RetelCA	\$ 557,1	2,4%	\$ 13,31		
FIJO	Capital	\$ 2.871,8	12,3%	\$ 353,80		
FIJO	Comunicaciones	\$ 373,0	1,6%	\$ 5,97		
		\$	1,070	\$		
FIJO	Impuestos	97,9	0,42%	0,41		
FIJO	Parqueaderos	\$ 191,1	0,82%	\$ 1,57		
FIJO	Revisión Técnico- Mecánica	\$ 21,0	0,09%	\$ 0,02		
1 100	Salarios (1.5 SMV) +	\$	0,0370	\$		
FIJO	Prestaciones (55.69%)	2.442,9	10,5%	256,01		
FIJO	Seguros	\$ 414,9 1,8%		\$ 7,39		
	Total	\$ 23.310,0	100%	\$ 3.468,49		

Fuente:(Ministerio de Transporte, 2015)

3.2 Parámetros utilizados en el modelo matemático

3.2.1 Contenedores de recolección

Los contenedores se tuvieron en cuenta para la formulación del modelo y funcionaron como una restricción. Estos elementos son suministrados por la compañía recolectora con el fin de almacenar y transportar el aceite desde el punto generador hasta el depósito. Así mismo con este contenedor se identificó la cantidad de aceite que genera cada punto, determinar la frecuencia para recolectar y determinar las rutas de acuerdo con la capacidad de carga de los vehículos. Los contenderos se clasificaron en la Tabla 7 de acuerdo con la capacidad de aceite por litros que pueden almacenar.

Tabla 7. Clasificación de contenedores según su capacidad en litros.

Contenedor	Capacidad en litros	Dimensiones
	30 litros	Alto: 42 cm Ancho 27 cm Largo: 32 cm
	50 litros	Alto: 49 cm Ancho 30 cm Largo: 36 cm
	70 litros	Alto: 69 cm Ancho 41 cm Largo: 40 cm
	90 litros	Alto: 77 cm Ancho 41 cm Largo: 40 cm

120 litros	Alto: 80 cm Ancho 40 cm Largo: 49 cm
150 litros	Alto: 96 cm Ancho 40 cm Largo: 49 cm

Fuente: (Producciones generales S.A, 1968)

3.1.9 Frecuencia de recolección

La frecuencia de recolección es un factor indispensable para el modelo matemático ya que este permite identificar el tiempo de recolección de cada punto, información que será útil para diseñar y organizar el orden de las rutas de recolección. Esta información fue recolectada e identificada por el estudio de prefactibilidad realizado por (Casallas, 2017) en el cual se definieron los siguientes valores que se identifican en la Tabla 8.

Tabla 8. Frecuencia de recolección por punto.

Frecuencia	Promedio por punto
5 a 7 días	Semanal
10 a 15 días	Quincenal
20 a 30 días	Mensual

Fuente: Elaboración propia

De acuerdo con esta frecuencia de recolección se identificaron los puntos que se programaron en el modelo como se evidencia en el Anexo 2.

3.1.10 Horario

Para el modelo matemático, se asignó una jornada laboral de 8 horas. En donde la flota de vehículos inicia en el depósito y parte hacia los puntos de recolección, luego de terminada la recolección de todos los puntos programados retorna al depósito antes de finalizar la jornada para realizar el proceso de descargue del aceite recolectado.

3.1.11 Tiempo de recolección por punto

Para el proceso de recolección se asignó un tiempo promedio de acuerdo con la cantidad de aceite que se recolecta por punto, este tiempo se asignó para que el operario de recolección reciba el aceite, diligencie el certificado y cargue al vehículo. Esta información se determinó basándose en el modelo propuesto por (Guevara Parada & Vargas Saavedra, 2014), sin embargo se realizó una adaptación a la ruta del aceite vegetal usado en la ciudad de Bogotá.

Además según (Mejía, 2009), el tiempo está determinado según la habilidad del personal encargado de realizar la recolección así como también de los factores externos que se pueden presentar en los puntos de recolección. En la Tabla 9 se puede apreciar que las cantidades entre 30 y 70 litros se les asignó un tiempo promedio de recolección de 15 minutos, en donde se tuvo en cuenta la manipulación de carga según el tamaño de los contenedores de acuerdo con la Tabla 7, y el proceso de recepción de la documentación con el personal a

cargo del punto. Luego se puede evidenciar en Tabla 9 que para las cantidades entre 90 y 150 litros se les asigno un tiempo de 25 minutos, teniendo en cuenta que el levantamiento del tipo de contenedor utilizado exige un esfuerzo adicional en su carga lo que conlleva un mayor tiempo en su cargue al vehículo.

Tabla 9 Asignación de tiempos por cantidad de recolección.

Tiempo promedio de recolección	Cantidad que recolectar		
	30 litros		
15 minutos	50 litros		
	70 litros		
	90 litros		
25 minutos	120 litros		
	150 litros		

Fuente: Elaboración propia

3.2 Descripción del Modelo

El modelo matemático planteado buscó optimizar la ruta de recolección de Aceite Vegetal usado en Bogotá realizado por las empresas gestoras a partir de una formulación matemática enfocado en el modelo de enrutamiento de vehículos de optimización combinatoria.

El objetivo del modelo es minimizar los costos operacionales implícitos en la recolección, definiendo los costos más relevantes en el proceso y las distancias que hay entre los diferentes nodos, para poder así diseñar la ruta óptima que permita recolectar la mayor cantidad de aceite a un bajo costo. En la formulación matemática se tuvieron en cuenta una serie de restricciones que influyen en el proceso de recolección del AVU, las cuales están sujetas en el modelo planteado.

3.3 Formulación del Modelo

Para la formulación matemática se tuvieron en cuenta las variables y parámetros que se describen a continuación:

3.3.1 Variables

i = Punto de Origen

i = 1

i = Puntos de recolección

 $j = 1, 2, 3, \dots n$.

K= Vehículos

K= 1,2

 X_{ji} = Litros de aceite producidos en cada punto de recolección j para transportar hasta el punto de origen i.

 Y_{ij} = Distancia desde el punto de origen i hasta los puntos de recolección j(teniendo en cuenta la distancia entre los puntos de recolección).

CK_{ij} =Cantidad de vehículos que salen del punto origen **i** hacia los puntos de recolección **j**.

3.3.2 Parámetros

CXij =Costo del litro recolectado en cada punto de recolección j.

 CK_{ij} = Costo por Km recorrido desde el punto de origen i hasta los puntos de recolección j.

 CB_{ij} = Capacidad de cada vehículo B que sale del punto de origen i hacia los puntos de recolección j.

 E_i = Capacidad en litros que puede procesar el punto de origen i.

 F_j = Capacidad de los contenedores entregados en cada uno de los puntos de recolección j.

 TRC_j = Tiempo promedio de recolección de carga por cada litro de aceite en cada punto de recolección j.

 TM_{ij} = Tiempo máximo en horas de trabajo para el recorrido desde el punto de origen i hasta los puntos de recolección j.

TF_{ij} = Tiempo de frecuencia para realizar la recolección en cada punto de recolección j.

 V_{ij} = Velocidad de recorridos (en kilómetros por hora) del medio de transporte desde el punto de origen a los puntos de recolección.

Modelo matemático:

El modelo matemático propuesto se diseñó y adapto a partir de los modelos de optimización propuestos por (Araujo et al., 2010),(Guevara Parada & Vargas Saavedra, 2014) y (Bermeo Muñoz & Calderón Sotero, 2009) los cuales fueron diseñados a partir del método de optimización de transporte VRP y cumplen con la misma función objetivo que busca este proyecto, en donde se utilizaron de referencia algunos variables como la capacidad de los vehículos, el costo de vehículo en el cual se incluyen los costos de mantenimiento, mano de obra entre otros además el tiempo de viaje del nodo i hasta el nodo j el cual va en función de la distancia recorrida.

$$F. O. \min Z = \left\{ \sum_{j=1}^{n} X_{ji} . CX_{j} + \sum_{i=1}^{1} \sum_{j=1}^{n} Y_{ij} . CK_{ij} \right\}$$

3.3.3 Función objetivo:

Minimizar los costos operacionales de la ruta de recolección de AVU en la ciudad de Bogotá.

[Litros de aceite producidos en cada punto de recolección j por el Costo por cada litro de aceite recolectado en los puntos de recolección j más la sumatoria de la distancia desde el punto de origen i hasta los puntos de recolección j por el costo por km recorrido desde el punto de origen hasta los puntos de recolección.]

Sujeto a:

3.3.4 Restricciones

•
$$\sum_{CB_{ij}=1}^{n} CB_{ij} \geq \sum_{j=1}^{n} X_{ij} \ \forall j = 1, 2, 3, ... n$$
 (1)

La restricción (1) está sujeta a la capacidad de vehículos que salen del punto origen *i* hacia los puntos de recolección *j* siendo mayor o igual a la sumatoria de los litros de aceite producidos en cada punto de recolección *j* para transportar hasta el punto de origen *i*.

•
$$\sum_{CB_{ij}=1}^{n} CK_{ij} \leq E_i \,\forall \, i=1 \quad (2)$$

La restricción (2) está sujeta a la cantidad de vehículos que salen del punto de origen i hacia los puntos de recolección j siendo menor o igual a la capacidad en litros que puede procesar el punto de origen i.

•
$$\sum_{j=1}^{n} T_j \ x \ X_{ji} \le T_{ij} \ \forall \ j = 1, 2, 3, ... n$$
 (3)

La restricción (3) está sujeta al tiempo promedio de recolección por cada litro de aceite en cada punto de recolección j por los litros de aceite producidos en cada punto de recolección j para transportar hasta la planta origen i menor e igual al tiempo disponible para el recorrido desde el punto de origen i hasta los puntos de recolección j para todo punto de recolección.

•
$$\sum_{j=1}^{n} TF_{ij} \ x \ X_{ji} \le F_{j} \ \forall \ j = 1, 2, 3, ... n$$
 (4)

La restricción (4) está sujeta al tiempo de frecuencia de recolección desde el punto de origen i hasta los puntos de recolección j por los litros de aceite producidos en cada punto de recolección j para transportar hasta al punto de origen i puede ser menor o igual a la capacidad del contenedor entregado a cada punto de recolección.

CAPÍTULO 4

4.OPTIMIZACIÓN MODELO MATEMÁTICO

Luego del modelo matemático planteado en el capítulo 3, basado en el problema de enrutamiento de vehículos de optimización combinatoria y según la revisión de la literatura expuesta en el capítulo 2,en el presente capítulo se buscará optimizar el modelo matemático propuesto a partir del uso de las técnicas heurísticas de construcción y de dos fases, con el uso del algoritmo del ahorro y el algoritmo de ramificación y acotamiento para solucionar el modelo con el cual se propondrá la ruta estratégica que permita optimizar el proceso de recolección de aceite vegetal usado en Bogotá.

Con el fin de utilizar los algoritmos que permitirán encontrar la ruta óptima, se utilizará una aplicación llamada VRP Solver, la cual permitirá encontrar una ruta óptima a partir de las variables utilizadas en el modelo y los datos que se recolectaron.

4.1 VRP SOLVER

VRP Solver es una aplicación que permite resolver problemas de optimización de rutas de recolección, fue diseñada por el Instituto de Energía y Eficiencia de Ecuador, por los ingenieros Geógrafos Paul León y Patricio Gallardo, para acceder a esta aplicación se puede hacer por medio de la dirección https://transporte-iner.shinyapps.io/cvrp_solver/. La aplicación se diseñó con el uso de programación lineal basado en el modelo VRP, utilizando dos metaheurísticas para la solución; una de ellas uso el método constructivo, con el algoritmo del ahorro y la otra una metaheurística de dos fases, utilizando el algoritmo de ramificación y acotamiento (León & Gallardo, 2015).

La aplicación VRP Solver permite el ingreso de la información por medio de un archivo en Excel, el cual debe contener la información del depósito y los puntos de recolección en coordenadas geográficas (Latitud y longitud), además debe indicar la demanda a recolectar por punto. La aplicación permite seleccionar el

tipo de optimización que se requiera ya sea basada en el tiempo o en la

distancia.

4.3 Componentes de la aplicación VRP Solver

La aplicación funciona con cuatro componentes fundamentales que permiten

optimizar el modelo propuesto. Para ello es necesario realizar su instalación.

4.3.1 Servidor de enrutamiento

La aplicación VRP Solver para su funcionamiento utiliza un servidor de

enrutamiento OSRM ((Máquina de enrutamiento de código abierto) el cual

permite la creación de matrices y geometrías para diseñar las rutas. Además,

utiliza las bases de datos de OpenStreetMap para proporcionar una solución

gráfica basada en información geoespacial(León & Gallardo, 2015).

Para hacer uso de la aplicación es necesario realizar la instalación del servidor

de rutas en el ordenador, el cual se puede realizar por medio de la descarga

de un paquete de datos que se elige de acuerdo al país en donde se vaya a

realizar la programación, el archivo se puede descargar en la dirección

https://reckoningrisk.com/coding/2017/OSRM-server/ utilizando la opción de

Suramérica y luego la subregión Colombia, este archivo debe guardarse en el

Disco C del equipo.

C:/osrm/osrm-extract.exe C:/osrm-data/colombia-latest.osrm.pbf -p C:/osrm/profiles/foot.lua

C:/osrm/osrm-contract.exe C:/osrm-data/colombia-latest.osrm.osrm

C:/osrm//osrm-routed.exe C:/osrm-data/colombia-latest.osrm.osrm --port 5000

Figura 7. Direcciones para la programación del servidor de rutas.

Fuente: Elaboración propia

Posterior a la instalación del archivo, se debe programar el servidor en el equipo por medio de las direcciones que se encuentran en la Figura 7 en la aplicación Windows Power Shell, la cual es una interfaz de consola suministrada por Microsoft en donde se ejecuta cada una de las direcciones y se configura el servidor de rutas en el equipo como se puede ver en la Figura 8.

```
### Windows PowerSed
### Address PowerSed
### Addre
```

Figura 8 Servidor de rutas.

Fuente: Elaboración propia

4.3.2 R Studio

Es un entorno de desarrollo integrado para lenguaje de programación R, está diseñado para la programación estadística y la creación de gráficas. R studio incluye una consola que se puede ver en la Figura 9, el cual contiene un editor de sintaxis que apoya la ejecución del código, así como herramientas para el trazado, la depuración y la gestión del espacio de trabajo. R studio se puede descargar por medio de la dirección https://www.rstudio.com/products/rstudio/download/ e instalarlo directamente en el ordenador(Albukrek & Allaire, 2019).

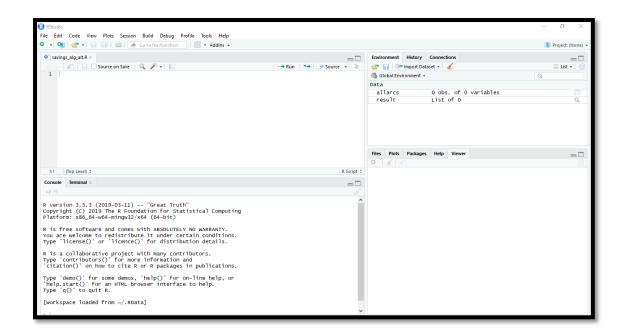


Figura 9 Plataforma R Studio

Fuente: (Albukrek & Allaire, 2019)

4.3.3 Lenguaje de Programación R

Es un lenguaje de programación orientada a objetos para cálculos estadísticos y la representación gráfica de los datos obtenidos. Este lenguaje está basado en comandos y a partir de una sucesión de comandos se crean los script o espacio de trabajo. R consta de un sistema base y de paquetes adicionales que extienden su funcionalidad(Albukrek & Allaire, 2019).

Basado en el lenguaje de programación R, la aplicación utiliza un código fuente en donde a partir del uso de comandos, funciones y variables se escribieron los algoritmos de ahorros y de ramificación y acotamiento, para que a partir de los datos ingresados y mediante el uso del servidor de rutas se creen las matrices que permiten identificar las distancia y los tiempos óptimos para la creación de rutas.

VRP Solver realiza el proceso de optimización en cuatros pasos para llegar a la optimización del modelo planteado. Los cuales se nombrarán a continuación:

- Matriz de Distancia: Para obtener la información de las rutas, la aplicación necesita identificar la información de latitud y longitud de cada punto con el fin de encontrar la distancia en kilómetros que hay desde el depósito i hasta cada uno de los puntos de recolección j=1,2....82, así como también la distancia que hay entre cada uno de los puntos de recolección j=1,2....82, posterior a esta información crea una matriz de distancia.
- Matriz de Tiempo: Basado en la misma metodología que se realiza en la matriz de distancia, la aplicación identifica el tiempo en minutos que tarda en recorrer cada uno de los nodos y posterior a esto realiza la matriz con cada uno de los datos encontrados.
- Ruta Óptima: Basado en la matriz de distancia y tiempo con la información en kilómetros y minutos identificados en cada uno de los puntos. La aplicación utiliza las heurísticas de solución para encontrar la mejor ruta que partiendo del depósito permita recolectar la demanda establecida en cada uno de los puntos y posteriormente llegue al depósito con toda la demanda recolectada. Adicional identifica el tiempo total de recolección y la distancia total recorrida.
- Gráfica de la Ruta Óptima: Luego de conocer la ruta óptima por el orden asignado de cada uno de los puntos en que debe iniciar y terminar la recolección, se identifica por medio de una gráfica proporcionada por OpenStreetMap el recorrido que debe realizar el vehículo recolector.

4.5 Programación modelo propuesto

De acuerdo con las características de la aplicación y luego de la instalación y adaptación de todos los componentes, se procedió a realizar la programación del modelo utilizando la base de datos del Anexo 2 en donde se evidencia todas las variables y parámetros descritos en el capítulo 3.

Sin embargo, realizando el análisis de los datos recolectados para la programación del modelo, se tuvo en cuenta la frecuencia de recolección como variable de decisión para la clasificación de los puntos según la Tabla 8 expuesta en el capítulo anterior. Con esta clasificación se realizó una simulación similar a la utilizada por la empresa Biogras, la programación se inició con los puntos que se deben recolectar en un periodo semanal entre 5 y 7 días, luego se programaron los puntos con un periodo quincenal entre 10 y 15 días y finalmente se realizó la programación de los puntos con un periodo mensual entre 20 y 30 días.

4.6 Prueba Semanal

El primer grupo asignado fue el semanal, en donde se incluyeron las frecuencias de recolección comprendidas entre 5 y 7 días. De acuerdo con esta información se realizó la primera prueba con 23 datos, con el fin de obtener la ruta óptima en este grupo seleccionado.

4.6.1 Datos

Tabla 10. Datos con frecuencia de recolección entre 5 y 7 días.

No.	Puntos de Recolección	Localidad	Dirección	Latitud	Longitud	Litros de aceite	Costo por cada litro de aceite	Costo total por litros	Tiempo promed io de recolec ción(mi n)	Tiempo de frecuenci a para realizar la recolecci ón
							\$	\$		
1	Burger King	Usaquen	CII 140 #10 A	4,7184	-74,0340	61	1.250	75.625	15	7 días
	Sepúlveda Bar-						\$	\$		
2	Restaurante	Usaquen	CII 117 # 5a-13	4,6938	-74,0307	16	500	7.750	15	7 días
							\$	\$		
3	Dunkin Donats	Chapinero	Cra. 19a #77- 62	4,6652	-74,0600	16	1.250	19.375	15	7 días
				,	,		\$	\$		
4	Pan pa ya	Chapinero	CII 97 #23-60	4,6850	-74,0571	16	1.250	19.375	15	7 días
-	p y	51151511010		1,3000	,	. •	\$	\$		
5	Sabrosito	Santafe	Cra 7 # 22 - 85	4,6089	-74,0706	126	1.250	156.875	25	7 días
5	Sabrosito	Santate	Cra / # 22 - 85	4,6089	-74,0706	126	1.250	156.875	25	/ dias

			Diag 53 # 49 A				\$	\$		
6	Dely Frito	Tunjuelito	20	4,5860	-74,1465	81	2.250	181.125	25	7 días
	Í	,	Clle 18 #22-	,	,		\$	\$		
7	Mis carnitas	Antonio Nariño	75sur	4,5851	-74,1010	81	2.250	181.125	25	7 días
	El Imperio Del		CII 21S #18-28,				\$	\$		
8	Pacifico	Antonio Nariño	Bogotá	4,5832	-74,1035	41	750	30.375	15	7 días
			Cra. 19 #64 Sur-				\$	\$		
9	Panadería Zulima	Ciudad Bolívar	57	4,5583	-74,1448	16	500	7.750	15	5 días
		5 (),,,,,,	Cll 28a sur # 15 -				\$	\$,
10	Tamales Buenos	Rafael Uribe	19	4,5771	-74,1083	81	500	40.250	25	7 días
4.4	Abierto Amigo Chino	Duanta Aranda	Cro. 20 40 04	4 6000	74 4440	64	\$ 750	\$ 45.275	4.5	7 días
11	Ciudad Montes Restaurante La	Puente Aranda	Cra. 36 #0-21	4,6029	-74,1112	61	750 \$	45.375	15	7 días
12	Piedra De Oreb	Puonto Aranda	Cra. 66 #12-45	4,6349	-74,1179	41	φ 750	\$ 30.375	15	7 días
12	Fledia De Oleb	ruente Aranua	Cia. 00 #12-43	,	·	41	\$	\$	13	7 ulas
13	Alondra	Suba	Cra 127 # 24-63	4,7353	-74,0854	61	750	45.375	15	5 días
10	7 HOTTATA	Oubu	Cra. 110b			0.	\$	\$	10	o dido
14	Maxi tacos y broaster	Suba	#136a-10	4,7416	-74,1027	126	2.750	345.125	25	5 días
	,		Autopista Nte.	, -	, -		\$	\$		
15	Chopinar	Suba	#125-97	4,7063	-74,0546	96	2.250	214.875	25	7 días
			Cra 104 # 148-				\$	\$		
16	PPC	Suba	07	4,7486	-74,0954	41	500	20.250	15	7 días
							\$	\$		
17	Lunch Express	Kennedy	CII 6 Bis # 79-13	4,6337	-74,1501	61	750	45.375	15	7 días
4.0	5 ~ 0.		0 701: "004	4 0000	74.4400	4.0	\$	\$	4 -	- 1/
18	Parador doña Olga	Kennedy	Cra 72 bis # 6-04	4,6226	-74,1439	16	750	11.625	15	5 días
40	l lat v francis nimma	IZ a sa sa ask s	Dg. 5a # 73B-27,	4,6270	-74,1425	4.4	\$	\$	4.5	7 4/22
19	Hot y french pizza	Kennedy	Bogotá Calle 43 Sur #			41	750	30.375	15	7 días
20	Restaurante Don	Kennedy	78n-10, Bogotá	4,6177	-74,1638	96	\$ 750	\$ 71.625	25	5 días
20	Jorge	Reilleuy	Cra 97 # 23S-		·	90	\$	71.025 \$	20	3 uias
21	Empanadas Tolimax	Fontibón	174	4,6798	-74,1328	41	φ 750	φ 30.375	15	7 días
	Empariadao Folimax	TOTALOGIT					, 00	00.070	10	7 dido

22	El Fogón latino	Fontibón	Cra 100#24c-08	4,6823	-74,1330	16	\$ 1.750	\$ 27.125	15	5 días
23	Brown restaurante	Engativá	CII. 51 #71-07	4,6678	-74,1072	41	\$ 1.750	\$ 70.875	15	7 días
							\$			
						1262	26.750	\$ 1.708.375	415	

Fuente: Elaboración propia

4.6.2 Matriz de Distancia

En la matriz de distancia generada de acuerdo con los datos de la frecuencia de recolección semanal en la Tabla 11, se evidenció que la mínima distancia es de 0,5 kilómetros la cual está ubicada entre el punto 18(Parador doña Olga) y el punto V19(Hot y french pizza), y la distancia máxima encontrada es de 27, 4 Kilómetros que se encuentran desde el punto V1(Burger King) hasta el punto 9(Panadería Zulima).

Tabla 11. Matriz de Distancia prueba semanal.

	V0	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22	V23
0	0,0	26,3	23,1	20,2	19,8	9,8	4,9	6,2	6,3	3,2	4,0	8,9	11,4	24,1	26,5	22,9	25,9	10,5	8,0	8,6	8,0	16,2	16,3	14,0
1	23,1	0,0	3,4	8,8	6,5	15,6	23,5	19,1	19,7	24,3	21,9	17,8	17,7	8,0	10,4	4,6	9,9	21,0	20,9	20,3	25,1	18,6	18,6	14,2
2	21,9	3,2	0,0	5,9	5,2	12,7	22,2	17,9	18,5	23,0	20,7	16,6	16,4	10,0	12,4	4,6	11,8	19,8	19,7	19,1	23,9	17,3	17,4	12,9
3	18,3	8,9	5,7	0,0	2,3	10,8	18,7	14,3	14,9	19,4	17,1	13,0	12,8	10,9	13,3	5,5	12,8	15,7	15,6	15,0	20,3	14,0	14,0	8,6
4	19,0	6,6	4,8	3,8	0,0	11,4	19,3	15,0	15,6	20,1	17,8	13,6	11,7	8,6	11,0	3,2	10,5	14,8	14,7	14,1	17,8	12,1	12,1	7,7
5	10,3	18,2	14,4	12,0	11,6	0,0	15,1	5,9	5,8	12,1	6,6	9,4	8,0	20,1	22,6	14,7	22,0	11,4	11,2	10,7	14,4	13,6	15,3	9,7
6	4,0	23,7	20,5	17,6	17,1	12,1	0,0	6,4	6,6	4,0	6,0	6,3	8,4	21,0	23,4	20,3	22,9	7,4	5,0	5,5	5,0	13,2	13,2	11,0
7	5,9	20,4	17,2	14,3	13,9	5,0	8,5	0,0	1,4	7,6	2,2	3,0	7,9	22,4	24,8	17,0	24,3	10,2	7,4	8,0	10,1	17,1	18,8	13,2
8	4,9	20,9	17,6	14,7	14,3	5,9	7,5	0,8	0,0	6,7	1,3	3,5	7,8	22,8	25,3	17,4	24,7	9,3	6,5	7,1	9,1	15,0	19,3	13,7
9	2,3	27,4	24,1	21,2	20,8	12,6	5,9	7,2	7,3	0,0	6,8	9,9	12,4	25,1	27,5	23,9	26,9	11,5	9,0	9,6	7,6	17,3	17,3	15,1
10	4,4	22,0	18,7	15,8	15,4	6,1	8,1	1,7	1,4	6,2	0,0	4,6	8,9	24,0	26,4	18,6	25,8	10,4	7,7	8,2	9,7	18,7	20,4	14,8
11	6,7	19,1	15,9	13,0	12,6	7,6	7,0	2,7	3,3	7,8	5,5	0,0	5,2	21,1	23,5	15,7	23,0	7,9	5,1	5,7	7,3	13,6	17,6	11,9
12	12,0	16,8	15,6	11,4	10,8	7,0	8,5	8,8	9,4	12,0	11,1	5,3	0,0	15,9	18,3	13,4	17,8	4,7	4,6	4,0	7,7	7,4	8,1	5,9
13	24,9	9,7	10,7	11,6	10,0	19,3	21,4	22,8	23,4	24,9	25,6	21,5	16,2	0,0	2,4	6,7	2,7	17,9	17,5	16,9	20,4	10,5	10,5	10,9
14	25,2	11,0	12,0	12,9	11,3	18,4	21,6	21,9	22,5	25,2	24,8	20,6	16,5	2,4	0,0	8,1	1,5	18,1	17,7	17,2	20,6	11,4	11,4	11,1
15	20,2	5,7	4,5	5,0	3,3	12,6	20,5	16,1	16,7	21,3	19,0	14,8	14,7	7,4	9,8	0,0	9,3	18,1	17,9	17,4	22,1	13,5	13,5	9,2
16	25,4	10,9	11,9	12,8	11,2	18,7	21,9	22,2	22,8	25,4	25,0	20,9	16,7	2,3	1,4	7,9	0,0	18,4	18,0	17,4	20,9	11,6	11,7	11,4
17	10,9	21,2	20,0	17,5	16,7	11,0	7,4	10,2	10,5	10,9	12,1	8,7	5,6	18,5	20,9	16,8	20,3	0,0	3,0	2,4	4,0	7,7	8,1	8,4
18	8,4	20,3	19,1	16,6	15,8	10,1	4,8	7,6	8,0	8,4	9,5	6,5	4,6	17,6	20,0	15,9	19,4	4,0	0,0	0,5	2,9	9,7	9,7	7,5
19	8,7	19,7	18,6	16,0	15,2	9,6	5,2	8,0	8,3	8,7	9,9	7,3	4,1	17,0	19,4	15,3	18,9	3,4	0,5	0,0	3,4	9,2	9,2	7,0
20	8,3	23,0	21,8	19,2	18,5	12,8	5,6	9,9	10,1	8,2	10,2	7,9	7,3	20,2	22,7	18,6	22,1	4,7	3,1	4,2	0,0	10,1	12,4	10,2

21	15,9	17,2	18,1	13,9	13,3	12,0	12,3	15,6	16,2	15,9	18,5	11,8	7,1	14,5	12,1	12,8	12,5	8,8	8,4	7,9	11,3	0,0	0,6	4,8
22	17,6	17,4	18,3	14,0	13,4	12,1	14,0	15,8	16,4	17,6	18,6	14,5	8,9	14,6	12,3	13,0	12,6	10,5	10,1	9,6	13,0	0,9	0,0	4,9
23	15,3	13,2	13,0	8,8	8,2	9,4	11,8	13,1	13,7	15,4	15,9	11,7	5,2	10,5	12,9	8,8	12,3	8,3	7,9	7,4	10,8	4,8	4,8	0,0

4.6.3 Matriz de Tiempo Semanal

En la matriz de tiempo de los datos semanal en la Tabla 12, se identificó que el menor tiempo de recorrido fue de 1,27 minutos el cual se obtuvo del recorrido del punto 18(Parador doña Olga) y el punto V19(Hot y french pizza, y el tiempo máximo encontrado es de 67,4 minutos el cual está entre el recorrido del punto 9 (Panadería Zulima) al punto V14(Maxi tacos y broaster).

Tabla 12. Matriz de Tiempo prueba semanal.

	V0	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22	V23
0	0,0	56,7	51,2	47,0	43,8	33,1	13,5	18,3	17,9	11,6	14,1	24,3	27,8	55,7	63,9	48,9	60,6	23,8	19,0	20,3	23,3	38,1	37,8	32,2
1	55,5	0,0	11,5	23,9	15,3	39,9	50,0	45,7	49,4	59,4	51,0	39,1	41,3	23,4	31,6	14,7	28,3	47,5	48,1	46,9	56,2	45,6	45,3	34,2
2	55,7	12,9	0,0	21,1	15,5	36,3	50,2	45,9	49,6	59,5	51,2	39,3	41,5	29,0	37,3	16,6	33,9	47,7	48,3	47,0	56,4	45,7	45,5	34,4
3	47,3	21,1	19,0	0,0	8,2	31,7	41,8	37,5	41,2	51,2	42,8	30,9	33,1	25,7	34,0	13,3	30,6	38,6	39,2	37,9	48,0	34,5	34,2	23,5
4	47,6	15,2	15,3	12,7	0,0	32,0	42,1	37,8	41,5	51,5	43,1	31,2	31,2	19,8	28,1	7,3	24,7	37,1	37,8	36,5	47,1	33,4	33,1	22,1
5	37,5	47,4	42,1	37,7	34,5	0,0	39,6	25,7	24,6	42,9	27,8	28,8	28,1	52,0	60,3	39,5	56,9	34,3	34,9	33,7	44,2	35,6	34,8	27,4
6	12,3	51,3	45,8	41,6	38,4	33,7	0,0	19,4	18,7	13,8	17,3	18,9	21,4	49,2	57,5	43,5	54,1	17,4	12,5	13,8	16,9	31,6	31,4	25,7
7	19,0	45,2	39,7	35,5	32,3	19,5	19,8	0,0	6,1	24,5	9,3	10,8	25,0	49,9	58,1	37,4	54,8	26,2	19,8	21,1	26,1	39,1	38,4	31,0
8	16,3	46,2	40,7	36,5	33,3	22,2	18,0	4,2	0,0	21,7	6,5	11,8	23,1	50,9	59,1	38,4	55,8	24,0	17,6	18,9	24,2	38,2	39,4	32,0
9	9,6	60,2	54,6	50,5	47,3	38,9	16,9	21,8	21,3	0,0	20,0	27,7	31,3	59,1	67,4	52,3	64,0	27,3	22,4	23,7	26,2	41,5	41,3	35,6
10	17,0	51,1	45,5	41,4	38,2	22,2	23,5	8,3	7,1	22,4	0,0	16,7	28,4	55,7	64,0	43,3	60,6	29,3	22,9	24,2	29,8	45,0	44,3	36,9

11	20,1	40,6	35,1	30,9	27,8	23,0	15,1	9,8	13,6	23,9	15,6	0,0	15,8	45,3	53,5	32,8	50,2	19,9	13,6	14,9	20,5	34,2	33,8	26,5
12	31,7	41,0	38,5	30,2	29,9	23,0	23,0	26,3	30,0	33,2	30,1	15,0	0,0	39,8	48,1	33,1	44,7	12,8	13,5	12,2	22,8	22,6	22,0	16,4
13	60,6	26,4	29,3	26,8	24,8	48,0	51,9	53,8	57,5	62,1	59,1	47,2	40,1	0,0	9,4	15,7	9,2	43,6	43,3	42,0	52,9	33,3	33,1	27,5
14	63,9	32,0	35,0	32,4	30,4	50,0	55,2	55,8	59,5	65,4	61,1	49,2	43,4	11,7	0,0	21,3	6,0	46,9	46,5	45,2	56,2	32,8	32,5	30,8
15	49,1	16,9	16,9	12,2	10,3	33,5	43,5	39,3	43,0	52,9	44,6	32,7	34,9	20,5	28,8	0,0	25,4	41,0	41,7	40,4	49,8	36,3	36,0	25,7
16	63,0	30,8	33,7	31,2	29,2	49,1	54,3	54,9	58,6	64,5	60,2	48,4	42,5	11,0	4,9	20,1	0,0	46,0	45,6	44,4	55,3	31,9	31,7	29,9
17	27,0	50,2	47,9	41,0	40,5	32,2	18,3	27,9	30,0	28,5	31,6	22,1	14,8	43,3	51,6	38,9	48,2	0,0	7,5	6,2	13,2	23,5	23,4	19,8
18	21,0	48,4	46,1	39,2	38,7	30,5	12,3	21,6	23,7	22,5	25,3	18,3	13,1	41,5	49,8	37,1	46,4	9,7	0,0	1,3	9,5	24,0	23,7	18,0
19	21,8	47,1	44,8	37,9	37,4	29,2	13,1	22,4	24,6	23,3	26,2	19,0	11,7	40,2	48,5	35,8	45,1	8,4	1,3	0,0	10,7	22,6	22,4	16,7
20	21,5	55,2	52,9	46,1	45,6	37,3	15,9	25,7	25,4	23,2	26,4	23,5	19,9	48,4	56,6	44,0	53,3	13,5	10,9	11,3	0,0	32,5	30,6	24,9
21	39,6	43,3	44,1	35,9	35,5	31,5	30,8	38,2	41,9	41,1	43,5	29,8	17,3	36,5	37,7	32,1	35,7	22,6	22,2	20,9	31,9	0,0	2,5	13,7
22	43,1	42,7	43,5	35,3	34,9	30,9	34,4	37,6	41,3	44,6	42,9	31,0	22,6	35,9	37,1	31,5	35,1	26,1	25,7	24,4	35,4	4,0	0,0	13,1
23	38,8	33,3	32,6	24,3	24,0	25,1	30,1	31,7	35,4	40,3	37,0	25,2	15,1	26,5	34,7	22,1	31,4	21,8	21,4	20,1	31,1	12,8	12,6	0,0

4.6.4 Ruta Optima prueba semanal

Tabla 13. Ruta óptima prueba semanal.

Ruta Optima	Demanda(Its)	Distancia (Km)	Tiempo (Min)
0-15-3-4-2-1-13-16-14-17-21-22-23-12-19-18-20-0	778	102,56	280,58
0-10-5-8-7-11-6-9-0	483,5	33,11	114,36
Total	1261,5	135,67	394,94

De acuerdo con las matrices de distancia y tiempo obtenidas de la aplicación VRP Solver, se obtuvo que para recorrer los 23 puntos fue necesario realizar dos rutas óptimas como se muestra en la Tabla 13, las cuales pueden realizarse por dos vehículos o en dos días si se utiliza el mismo vehículo. Con las rutas óptimas obtenidas se recolectaron 1261,5 litros de aceite, recorriendo 135, 67 Kilómetros con un tiempo de duración de 394, 94 minutos lo que equivale aproximadamente a 7 horas.

4.6.5 Gráfica ruta óptima

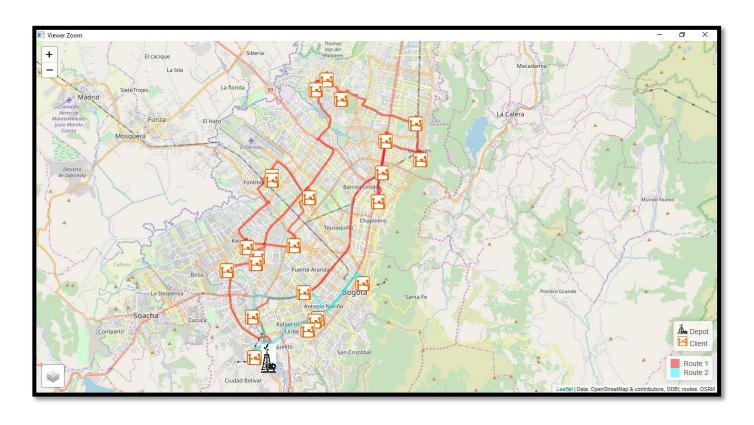


Figura 10.Ruta óptima frecuencia semanal.

Luego de obtener la información de las rutas óptimas y el orden para realizar la recolección, se obtiene la información gráfica de las rutas en las cuales el vehículo recorre cada uno de los puntos como se muestra en la Figura 10, así mismo es posible identificarlas de acuerdo a las convenciones que se pueden ver en la Figura 10.

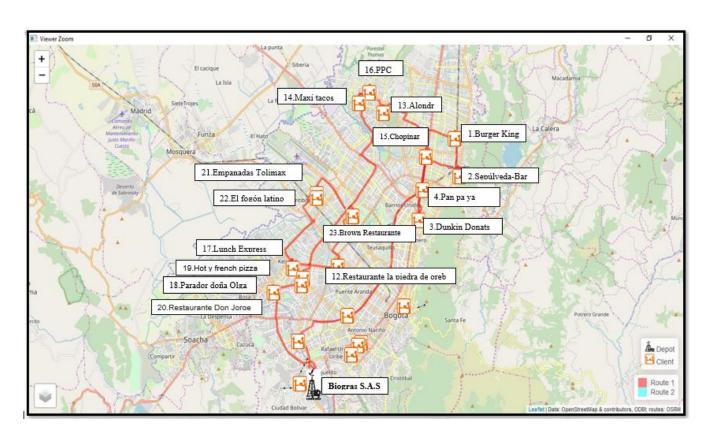


Figura 11. Descripción ruta óptima 1.

De acuerdo a la información de la Figura 11, se puede evidenciar que la ruta óptima 1 visito 16 puntos y obtuvo una demanda de 778 litros de aceite, en donde recorrio 102,56 Kilometros y lo realizo en 280,58 minutos.

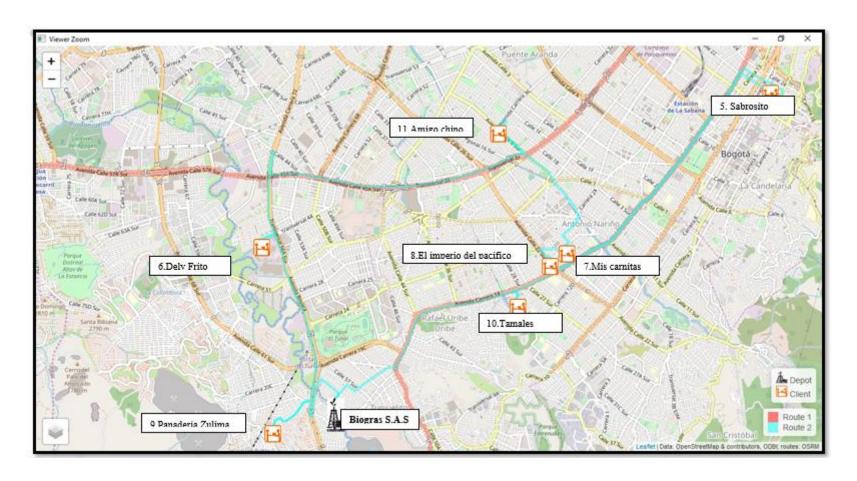


Figura 12. Descripción ruta óptima 2.

De acuerdo con la información de la Figura 12, se evidencia que la ruta óptima 2 recorrió 7 puntos y obtuvo una demanda de 483,5 litros de aceite en donde recorrió 33, 11 Kilómetros en 114, 36 minutos.

No	Puntos de Recolección	Localidad	Dirección	Latitud	Longitud	Litros de aceite	ca	esto por da litro aceite	Costo total por litro recolectado	Tiempo promedio de recolección(min)	Tiempo de frecuencia para realizar la recolección
									 \$		recolection
1	Delicias Gourmet	Usaquen	Cra 19 # 166-51	4,7464	-74,0418	41	\$	1.250	50.625	15	15 días
2	Burguesa	Usaquen	Cll 140 #15a-38	4,7224	-74,0434	81	\$	1.250	100.625	25	15 días
3	Provocaciones	Chapinero	AC 85 # 19A-42	4,6716	-74,0581	41	\$	750	\$ 30.375	15	15 días
4	Pizza Gourmet	Chapinero	Cra11#71-36/40	4,6568	-74,0589	61	\$	750	\$ 45.375	15	10 días
5	Pizza pizza castellana	Chapinero	CII 100 # 31-05	4,6838	-74,0461	41	\$	750	\$ 30.375	15	10 días
6	La divina comedia pizzería	Chapinero	CII 71 # 5-75	4,6536	-74,0549	41	\$	750	\$ 30.375	15	15 días
7	Restaurante Tasca Madrid	Santafe	Cra. 13 #12-23	4,6120	-74,0716	61	\$	750	\$ 45.375	15	15 días
8	El caporal	San Cristóbal	Cll 26 # 6 30 sur	4,5943	-74,1155	96	\$	750	\$ 71.625	25	15 días
9	Manantial del sabor	San Cristóbal	Cra 5 a # 35 07	4,5643	-74,0996	41	\$	750	\$ 30.375	15	15 días
10	La Danza Del Chivo	Tunjuelito	Cra. 25 #53 Sur	4,5782	-74,1375	61	\$	750	\$ 45.375	15	15 días
11	Bonaparte restaurante	Candelaria	Cra. 8 #11- 59	4,5990	-74,0762	16	\$	500	\$ 7.750	15	15 días
12	Panadería Duquesa	Rafael Uribe		4,5840	-74,1050	41	\$	1.250	\$ 50.625	15	15 días
13	Humo Carbón y sabor	Puente Aranda	Cll. 3b #41-01, Bogotá	4,6137	-74,1117	41	\$	1.750	\$ 70.875	15	10 días
14	El rey brasero	Puente Aranda	Cra. 52a #29 - 16	4,6053	-74,1275	41	\$	2.750	\$ 111.375	15	15 días
15	Pare aquí cafetería	Puente Aranda	Cll. 1h #36-35	4,6060	-74,1092	16	\$	1.250	\$ 19.375	15	15 días
16	Panadería La Bogotanita	Puente Aranda	CII. 1f #32-13	4,6025	-74,1061	16	\$	1.250	\$ 19.375	15	10 días

		Puente							\$		
17	Torti pava	Aranda	Cra. 31c N5-04	4,6070	-74,1014	16	\$	500	7.750	15	10 días
	TOTAL POLICE	Barrios		.,	,		T		\$		
18	David Broaster	Unidos	Cra. 64 #77-02	4,6782	-74,0798	41	\$	1.250	50.625	15	15 días
		Barrios							\$		
19	Broaster Y Delicias	Unidos	CII. 74 #20A-68	4,6626	-74,0626	16	\$	1.750	27.125	15	10 días
20	Restaurante Kassata	Suba	Cra. 53 #134d 75	4,7224	-74,0576	126	\$	1.250	\$ 156.875	25	15 días
20	Nesidurante Nassata	Suba	Trans. 91 # 136 -			120	Ψ	1.230	\$	25	15 dias
21	La fogata roja	Suba	60	4,7352	74,0853	41	\$	750	30.375	15	15 días
	CyS Cocina		Cra 104 # 148-						\$		
22	Colombiana	Suba	07	4,7486	-74,0954	16	\$	500	7.750	15	15 días
23	Kanny branatar	Kennedy	CII 57B#71D-70	4,5998	-74,1642	81	\$	1.250	\$ 100.625	25	15 días
23	Kapry broaster	Kennedy	CII 57 B#7 1D-70	•	·	01	Ф	1.250	\$	25	15 ulas
24	Comidas rápidas taty	Kennedy	CII 5a 87a-14	4,6399	-74,1605	61	\$	500	30.250	15	15 días
		•		4,6830	-74,1398		·		\$		
25	Arepas de Sofy	Fontibón	CII 23D # 104-25	4,0030	-74,1390	81	\$	750	60.375	25	15 días
00	Restaurante sazón y	Fig. a. a. t.iv t	OII 77 #440 00	4.7400	74.4000	04	Φ	0.750	\$	0.5	10 días
26	sabor Restaurante lucho	Engativá	CII. 77 #112-33,	4,7162	-74,1236	81	\$	2.750	221.375 ©	25	10 días
27	gourmet Santijuana	Engativá	Cra. 73 #76-99	4,6938	-74,0923	126	\$	2.750	φ 345.125	25	15 días
	gommo	g		4 6740	74.0000		· ·		\$		
28	Panadería la 66	Engativá	Cra. 69p #64-99	4,6740	-74,0980	81	\$	2.250	181.125	25	15 días
00	0 (:	- · · ·	011 70 4074 00	4,6949	-74,1092	40	Φ.	4.050	\$	4.5	40 -1(
29	Sanfermin	Engativá	CII. 70a #87A-96	,	,	16	\$	1.250	19.375	15	10 días
									Ф		
						1505	\$	34.750	1.998.625	515	
							Ť	3 3 3	-100010-0		

4.7 Prueba Quincenal

El segundo grupo asignado fue el quincenal, en donde se incluyeron las frecuencias de recolección comprendidas entre 10 y 15

días.

De acuerdo con esta información se realizó la segunda prueba con 29 datos, con el fin de obtener la ruta óptima en este grupo

seleccionado.

4.7.1 Datos

Tabla 14 Datos con frecuencia de recolección entre 10 y 15 días.

Fuente: Elaboración propia

4.7.2 Matriz de Distancia Quincenal

En la matriz de distancia generada de acuerdo con los datos de la frecuencia de recolección quincenal en la Tabla 15, se evidenció

que la mínima distancia es de 0,6 kilómetros la cual está ubicada entre el punto 15(Pare aquí cafetería) y el punto V16(Panadería la

bogotanita), y la distancia máxima encontrada es de 27, 9 Kilómetros que se encuentran desde el punto 1(Delicias Gourmet) hasta

el punto V23(Kapry broaster).

Tabla 15. Matriz distancia prueba quincenal.

	VO	\/ 4	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22	V/22	V24	V25	V26	V27	V28	V29
	VU	V1	VZ	VS	V4	Vo	VO	V	Vo	ve	V 10	VII	V12	V13	V14	V15	V16	V17	V10	V19	V20	VZI	VZZ	V23	V24	V25	V26	VZI	V20	V29
0	0,0	27,4	25,2	20,3	18,9	20,6	17,8	10,1	7,0	5,0	2,5	8,9	5,7	9,3	6,8	8,9	9,0	9,9	19,2	18,4	25,2	24,1	25,9	7,5	11,9	16,3	21,7	18,7	15,5	18,1
1	27,2	0,0	3,8	12,1	13,0	12,1	13,8	19,0	22,7	26,4	25,7	20,9	23,3	22,0	23,9	21,5	21,2	20,3	13,3	12,0	6,3	8,2	8,6	27,9	26,5	21,7	20,7	12,5	14,8	20,2
2	24,0	4,0	0,0	8,9	9,8	6,7	10,6	15,8	19,5	23,2	22,5	17,7	20,1	18,7	20,7	18,3	18,0	17,1	10,1	8,8	2,8	6,7	8,6	24,7	20,6	18,0	13,1	8,8	11,6	11,5
3	19,0	9,2	7,1	0,0	2,4	2,4	3,4	10,9	14,5	18,3	17,5	12,8	15,2	13,8	15,8	13,3	13,1	12,2	7,2	2,8	7,0	10,2	12,0	19,8	18,4	16,6	11,4	7,4	8,6	11,0
4	16,5	11,1	9,0	2,6	0,0	4,3	1,3	5,7	12,0	12,4	15,0	7,8	12,7	11,3	13,3	10,8	10,6	9,7	6,5	1,7	8,9	12,1	13,9	17,3	15,8	12,8	10,8	6,7	8,0	10,3
5	19,4	10,1	7,9	3,0	3,7	0,0	5,3	11,2	14,9	18,6	17,9	12,4	15,5	14,1	16,1	13,7	13,4	12,5	5,3	5,6	7,8	11,0	12,9	20,1	18,7	16,0	11,8	7,7	8,1	11,3
6	19.7	11,8	9,6	2,8	1,7	5,1	0,0	7,2	15,2	15,3	18.2	8,8	15.9	14,5	16,5	14,0	13,7	12,8	7,2	2,1	9,6	12,7	14.6	20,5	16,8	16,6	11.4	7,4	8,6	11,0
7	9,7	18,6	16,4	11,5	6,5	11,8	10,1	0,0	7,4	6,7	9,7	1,9	5,6	6,7	8,7	6,3	6,0	5,1	11,0	9,6	16,3	19.5	21,4	12,7	12,1	16,4	15,9	13,6	9,6	12,3
8	5,2	20,8	18,7	13,7	12,3			7,6	0,0	6,4	3,7	6,1	1,9	4,1	2,7	2,2	2,4	3,4	12,9	11,8			23,6	6,6	9,5		19,5	16,3	13,2	
9			ĺ							,	,	,	Ĺ		,									,		Ĺ		Ĺ	,	
	5,5	24,9	22,7	17,8	16,4		16,2	7,6	4,8	0,0	6,8	5,5	3,7	7,7	6,9	6,6	6,4	7,3	16,9	15,9	22,6		27,6	10,1	13,7	24,0	23,5	20,3	17,2	20,0
10	3,8	24,1	21,9	17,0	15,6	17,3	14,5	10,8	4,5	6,5	0,0	9,4	5,3	6,9	5,0	6,4	6,0	6,6	16,1	15,1	21,9	22,4	24,2	5,8	10,2	14,6	19,9	16,9	13,8	16,4
11	9,2	21,6	19,5	14,5	8,3	14,8	10,2	3,1	6,3	5,0	9,1	0,0	5,0	5,8	7,5	5,4	5,1	4,2	12,8	12,6	19,4	22,6	24,4	11,5	13,9	18,2	17,8	15,4	11,4	14,2
12	5,0	22,7	20,5	15,6	14,2	15,9	13,1	6,2	2,8	3,2	5,0	5,0	0,0	5,6	4,8	4,4	4,2	5,2	14,7	13,7	20,4	23,6	25,5	8,2	11,6	21,8	21,4	18,1	15,1	17,8
13	8,6	20,4	18,2	13,3	11,9	13,5	10,8	7,1	3,6	8,7	5,9	5,7	5,0	0,0	2,5	2,1	2,7	2,0	10,2	11,4	18,1	21,3	23,2	7,8	7,8	11,2	16,0	13,1	9,3	12,4
14	6,1	22,3	20,1	15,2	13,8	15,5	12,7	9,0	2,3	6,9	4,2	7,6	3,7	3,4	0,0	3,0	3,5	5,1	11,0	13,3	20,1	19,3	21,2	6,1	7,2	11,5	16,9	13,9	10,8	13,3
15	7,3	19,9	17,8	12,8	11,4	13,1	10,4	6,7	2,8	6,5	5,8	5,1	3,4	1,2	2,9	0,0	0,6	1,5	12,0	10,9	17,7	20,9	22,7	8,0	8,9	19,1	18,6	15,4	12,3	15,0
16	6,8	19,3	17,2	12,2	10,8	12,5	9,8	6,1	2,3	6,5	5,3	4,6	2,8	1,7	3,5	1,1	0,0	1,5	11,4	10,3	17,1	20,3	22,1	7,5	10,3	18,5	18,0	14,8	11,7	14,4
17	7,4	18,8	16,6	11,7	10,3	12,0	9,2	5,5	2,9	7,2	5,9	4,1	3,5	1,7	4,1	1,2	0,9	0,0	10,8	9,8	16,6	19,7	21,6	8,1	9,4	17,9	17,5	14,3	11,2	13,9
18	16,3	12,2	10,0	4,7	3,6	5,4	4,4	8,2	11,8	15,5	,	10,1	12,4	11,1	13,0	10,6	10,3	9,4	0,0	3,8	9,9	9,5	11,4	17,0	13,3	10,3	8,0	4,0	3,3	4,6
19	17,8	10,8	8,6	1,8	1,0	3,9	1,7	5,9	13,3		16,2	8,1	13,9		14,5	12,1		10,9	3,7	0,0	8,5	11,7	13,6	18,5	16,0	13,1	10,4	6,4	6,1	9,9

20	23,0	5,8	3,7	7,9	8,8	7,9	9,6	14,9	18,5	22,2	21,5	16,8	19,2	17,8	19,8	17,3	17,0	16,1	9,2	7,9	0,0	4,1	5,9	23,7	18,6	15,9	11,1	6,7	9,3	9,4
21	24,9	11,3	9,1	11,7	12,6	11,7	13,4	18,7	22,3	26,0	22,8	20,6	23,0	21,6	20,4	21,1	20,8	19,9	9,9	11,7	7,3	0,0	2,7	22,6	14,7	11,6	7,2	7,5	10,1	6,2
22	25,4	12,5	10,3	12,9	13,8	12,9	14,5	18,1	21,7	25,4	23,3	20,0	22,4	21,0	20,9	20,5	20,2	19,3	10,2	12,7	8,5	2,3	0,0	23,1	15,9	12,8	8,4	7,9	10,6	7,4
23	6,4	26,3	24,2	19,2	17,8	19,5	16,8	13,1	5,9	10,1	5,0	11,6	7,5	8,3	5,3	7,9	7,9	8,9	15,2	17,3		21,7	23,5	0,0	5,9	13,9	19,3	16,3	13,1	15,7
24	12,5	23,9	21,7	19,2	17,5	19,1	16,4	12,0	9,9	14,5	10,4	13,4	11,3	8,5	8,0	10,0	10,5	9,8	13,8	17,0	20,2	20,1	22,0	5,7	0,0	8,4	13,8	14,7	11,5	9,7
25	16,9	22,0	19,9	15,6	14,5	17,2	14,8	12,5	16,3	20,1	14,8	14,4	17,0	15,6	11,7	15,1	14,9	14,0	11,4	14,7	15,8	11,4	13,7	14,6	7,3	0,0	10,3	8,3	7,1	6,3
26	22,7	18,3	16,1	10,9	11,0	11,5	11,8	15,3	19,0	22,7	20,6	17,2	19,6	18,3	18,1	17,8	17,5	16,6	7,4	9,9	12,1	8,2	9,2	20,3	13,0	9,9	0,0	5,2	7,8	4,2
27	17,7	13,9	11,8	6,5	6,7	7,1	7,4	11,0	14,6	18,3	15,6	12,8	15,2	13,9	13,1	13,4	13,1	12,2	3,0	5,6	8,0	7,9	9,8	15,3	12,1	9,4	6,5	0,0	2,8	2,9
28	16,0	14,6	12,4	8,2	6,1	9,8	7,3	8,9	12,5	16,2	13,9	10,8	13,2	11,8	10,2	11,3	11,0	10,1	4,0	7,3	10,2	10,1	11,9	14,1	11,8	7,0	8,7	3,0	0,0	4,0
29	18,2	14,6	12,4	9,2	9,4	9,8	10,1	12,2	16,0	19,7	16,1	14,1	16,6	15,2	13,7	14,8	14,5	13,6	5,7	8,3	10,9	6,5	8,9	15,9	9,0	6,0	3,8	2,9	3,3	0,0

4.7.3 Matriz de Tiempo Quincenal

En la matriz de tiempo de los datos semanal en la Tabla 16, se identificó que el menor tiempo de recorrido fue de 1,9 minutos el cual se obtuvo del recorrido del punto 15(Pare aquí cafetería) al punto V16(Panadería la bogotanita), y el tiempo máximo encontrado es de 66 minutos el cual está entre el recorrido del punto 9 (Manantial del sabor) al punto V22(CyC Cocina colombiana).

Tabla 16. Matriz de tiempo prueba quincenal.

	V0	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22	V23	V24	V25	V26	V27	V28	V29
0	0	55	52	46	45	45	45	30	16	20	7,4	29	16	24	19	24	23	26	45	42	54	56	61	19	30	41	52	42	36	43
1	60	0	14	23	28	24	31	40	47	58	55	49	49	44	50	43	43	41	29	23	16	24	27	55	58	52	42	29	33	41

2	57	10	0	20	25	19	28	37	44	55	52	46	47	41	47	40	40	38	26	20	10	19	24	53	54	46	36	24	30	33
3	46	16	12	0	10	8,2	14	25	33	44	41	34	35	29	35	29	29	26	15	7,3	15	22	26	41	44	38	26	15	20	25
4	45	22	18	9,3	0	15	5,6	17	31	36	40	25	34	28	34	28	28	25	16	8,7	21	28	33	40	41	35	27	16	21	26
5	51	22	18	13	15	0	17	30	37	48	45	36	40	34	40	33	34	31	20	18	21	28	33	46	48	44	32	22	24	31
6	51	25	21	11	6,8	16	0	21	38	42	46	28	40	34	40	34	34	31	19	9,3	24	31	35	46	47	42	30	19	23	29
7	30	41	37	31	25	31	26	0	23	23	30	9	19	20	26	19	19	17	27	27	40	47	52	32	33	33	38	31	23	28
8	16	42	38	32	31	32	32	20	0	18	11	21	7	11	8,9	8,4	9	12	31	28	41	48	53	15	26	38	47	36	31	37
9	20	55	52	46	44	45	46	25	18	0	21	21	14	25	23	22	22	24	44	42	54	61	66	29	41	55	60	49	45	50
10	12	50	46	40	39	39	39	28	10	20	0	29	15	18	14	18	17	20	38	36	49	53	58	16	27	38	49	39	33	40
11	30	48	44	38	32	37	32	12	22	19	30	0	19	19	25	19	19	15	34	34	47	54	58	30	40	40	45	39	30	36
12	16	47	44	38	36	37	37	19	11	9,9	16	18	0	17	15	14	13	18	36	34	46	53	58	22	32	47	52	41	37	42
13	25	41	38	32	31	31	31	20	10	25	19	19	14	0	9,2	6,1	7,4	5,7	28	28	41	47	52	20	23	31	44	34	26	35
14	21	46	42	36	35	35	35	24	6,2	20	14	25	10	9	0	9,1	9,6	13	29	32	45	47	52	15	21	32	44	33	28	34
15	22	39	35	29	28	29	28	17	8,3	20	16	18	10	3,6	9,5	0	1,9	4,6	27	25	38	45	50	17	27	38	44	33	28	34
16	20	37	33	27	26	27	26	15	6,9	19	15	17	9,2	5,1	9,7	3,7	0	5,2	26	23	36	43	48	15	27	36	42	31	26	32
17	23	38	34	28	27	28	28	16	9,7	22	18	15	12	4,9	13	4,2	4	0	27	24	37	44	49	18	28	37	43	32	27	33
18	42	26	22	13	14	15	17	21	29	40	37	30	31	25	31	25	25	22	0	11	25	27	31	37	36	30	22	11	12	18
19	47	21	18	7,6	4,9	14	9,3	17	33	36	41	25	36	30	36	29	29	27	13	0	20	27	32	42	42	36	26	15	19	25
20	56	15	11	18	23	20	27	35	42	53	50	44	45	39	45	38	39	36	24	18	0	15	20	51	51	43	33	20	26	30
21	61	26	22	26	31	28	35	44	51	62	55	53	53	48	52	47	47	44	25	27	21	0	9,9	56	47	37	25	20	26	22
22	63	30	26	30	35	32	39	44	51	62	57	53	54	48	54	47	48	45	25	31	24	11	0	57	45	35	23	21	27	20
23	16	51	48	42	40	41	41	30	12	26	13	30	18	20	14	20	18	22	40	37	50	53	57	0	21	38	49	39	33	39
24	33	55	51	46	47	48	48	33	27	41	27	39	31	25	23	27	28	26	38	44	52	49	54	18	0	28	40	35	30	30
25	43	49	45	38	39	42	41	28	36	48	37	37	39	33	33	33	33	30	29	36	43	40	39	38	24	0	29	24	20	18

26	55	38	35	25	27	28	31	36	43	55	49	45	46	40	46	40	40	37	18	23	34	31	30	50	38	28	0	13	20	13
27	43	27	24	15	17	17	20	26	33	44	37	35	35	30	34	29	29	26	6,9	12	24	21	26	38	32	24	17	0	7,6	11
28	41	31	27	21	20	24	23	22	29	40	35	31	32	26	26	25	26	23	11	18	29	26	30	35	30	20	22	10	0	15
29	47	34	31	24	26	27	30	30	38	49	41	39	40	35	38	34	34	32	16	22	32	28	28	42	27	17	12	11	11	0

4.7.4 Ruta Optima prueba Quincenal

Tabla 17.Ruta óptima prueba quincenal.

Ruta Optima	Demanda(Its)	Distancia (Km)	Tiempo (Min)
0-6-4-19-3-5-1-2-20-21-22-26-29-27-18-17-0	777,5	84,32	246,13
0-10-23-24-25-28-7-11-16-15-13-14-8-12-9-0	727	63,23	212,19
Total	1504,5	147,55	458,32

De acuerdo con las matrices de distancia y tiempo obtenidas de la aplicación VRP Solver se obtuvo que, para recorrer los 29 puntos de la frecuencia de recolección quincenal, fue necesario realizar dos rutas óptimas como se muestra en la Tabla 17 teniendo en cuenta que la capacidad de los vehículos es de 800 litros. Con las rutas óptimas obtenidas se recolectaron 1504,5 litros de aceite, recorriendo 147,55 Kilómetros con un tiempo de duración de 458,32 minutos lo que equivale aproximadamente a 7 horas y 38 minutos.

4.7.5 Gráfica ruta óptima

Luego de obtener la información de las rutas optimas y el orden para realizar la recolección de los puntos de la frecuencia quincenal, se obtiene la información gráfica de las rutas obtenidas en la Tabla 17 en las cuales el vehículo recorre cada uno de los puntos como se muestra en la Figura 13.

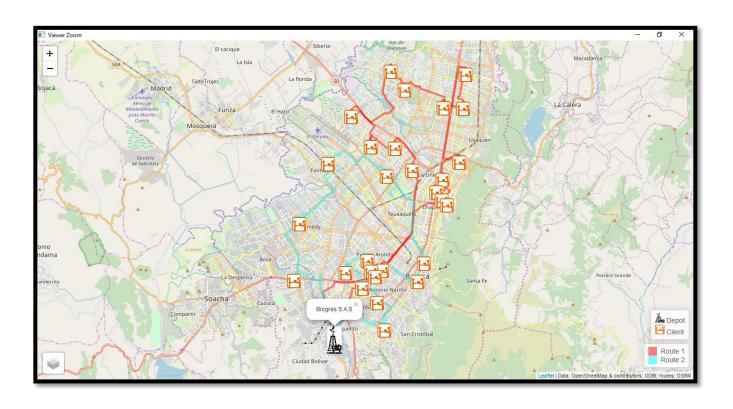


Figura 13. Ruta óptimas frecuencia quincenal.

De acuerdo a la información de la Figura 14, se puede evidenciar que la ruta óptima 1 la cual esta identificada con color rojo, se visitaron 15 puntos con lo que se obtuvo una demanda de 777,5 litros de aceite,en donde se recorrieron 84,32 Kilometros y se realizó en 246,13 minutos.

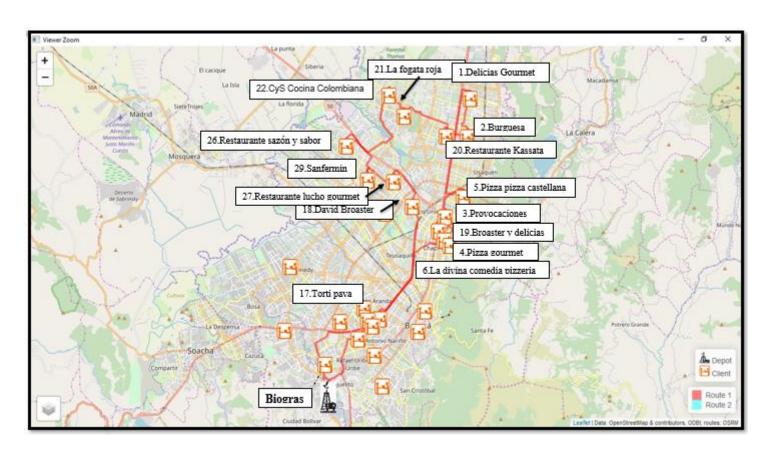


Figura 14. Recorrido ruta óptima 1 prueba quincenal.

En la Figura 15, se puede evidenciar que en la ruta óptima 2 identificada con el color azul, se visitaron 14 puntos con lo que se obtuvo una demanda de 727 litros de aceite, en donde se recorrieron 63,23 Kilometros y se realizo en 212,19 minutos.

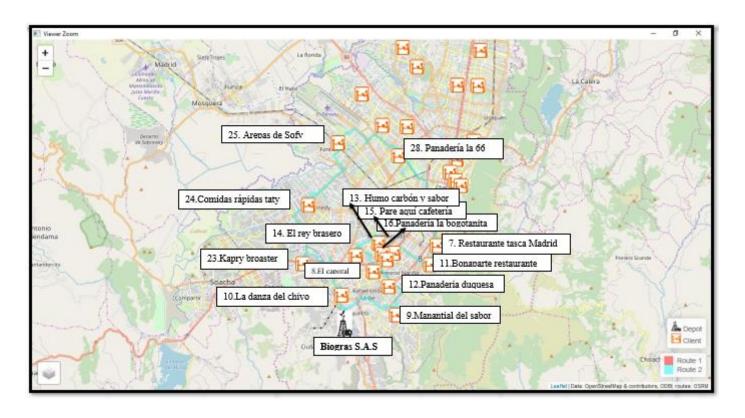


Figura 15. Recorrido ruta óptima 2 prueba quincenal.

4.8 Prueba Mensual

El tercer grupo asignado fue el mensual, en donde se incluyeron las frecuencias de recolección comprendidas entre 20 y 30 días. De acuerdo con esta información se realizó la tercera prueba con el fin de obtener la ruta optima en este grupo seleccionado.

4.8.1 Datos

Tabla 18 Datos con frecuencia de recolección entre 20 y 30 días

No.	Puntos de Recolección	Localidad	Dirección	Latitud	Longitud	Litros de aceite	Costo por cada litro de aceite	Costo total por litro recolectado	Tiempo promedio de recolección(min)	Tiempo de frecuencia para realizar la recolección
							\$	\$		
1	Archie's	Usaquen	CII 116 # 17-13	4,6973	-74,0463	16	2.750	42.625	15	30 días
							\$	\$		
2	Gourmet 82	Chapinero	Cll 82 # 12 37	4,6678	-74,0533	96	500	47.750	25	20 días
	Restaurante Don						\$	\$		
3	quijote	Chapinero	Cra. 9 #12-94	4,6011	-74,0760	16	750	11.625	15	20 días
	Hamburguesas el						\$	\$		
4	Corral	Chapinero	Cra 6 #45-22	4,6315	-74,0634	61	2.750	166.375	15	30 días
	Cafetería coffew						\$	\$		
5	fruit	Chapinero	CII . 93b #16-89	4,6780	-74,0502	16	2.250	34.875	15	30 días

							\$	\$		
6	Café cms	Santafe	CII. 18 # 8 33	4,6051	-74,0731	16	750	11.625	15	30 días
				,	,		\$	\$		
7	Dulce tentación	Santafe	CII. 37 # 13 26	4,6252	-74,0679	16	1.250	19.375	15	20 días
	Asadero Arde La		Ak. 1 #80 Sur-				\$	\$		
8	Brasa	Usme	10	4,5097	-74,1141	81	750	60.375	25	20 días
	Mr. Dogs		CII 49S # 88c-				\$	\$		
9	restaurante	Bosa	25	4,6312	-74,1798	81	1.250	100.625	25	30 días
	Pastelería San		CII 49S # 90 A -				\$	\$		
10	Martin	Bosa	09	4,6354	-74,1805	16	2.750	42.625	15	30 días
	Cigarrería y						\$	\$		
11	cafetería la 14	Teusaquillo	CII 44 # 14-46	4,6319	-74,0685	41	750	30.375	15	30 días
	-		Cra.16A # 49-		_,		\$	\$		1/
12	Restaurante K7	Teusaquillo	70	4,6375	-74,0689	61	2.250	136.125	15	30 días
4.0			011 50 4 11 05 05	4 0 4 4 4	= 4 0==0	0.4	\$	\$		00.1/
13	El camarón loco	Leusaquillo	CII 52A # 25-65	4,6414	-74,0752	61	2.750	166.375	15	30 días
4.4	Restaurante	NA ź mtima a	Cll. 22 #15-23,	4.0440	74.0700	4.4	\$ 750	\$	4.5	00 4/
14	Sabroso Chino	Mártires	Bogotá	4,6113	-74,0762	41	750	30.375	15	30 días
15	Restaurante El	Mártiroo	Cro. 16 #20 46	4 6400	74.0767	41	\$ 750	\$	15	20 días
15	Rincón Boyacense	Mártires	Cra. 16 #20-46	4,6109	-74,0767	41	750	30.375 \$	15	30 días
16	Barbacoa De La 20	Mártires	Cra. 20 #10-15,	4,6057	-74,0880	41	\$ 750	φ 30.375	15	20 días
10	20	Antonio	Cra 12B # 11-	4,0037	-74,0000	41	\$	\$0.375	15	20 uias
17	Mexitacos	Nariño	04 Sur	4,5845	-74,0935	16	φ 2.750	φ 42.625	15	30 días
17	WEXITAGOS	Rafael	Cra 11b # 36	4,5045	-7-4,0333	10	\$	\$	10	50 dias
18	Panadería Pijapan	Uribe	sur - 13	4,5678	-74,1056	41	1.250	σ 50.625	15	30 días
10	r anadona r ijapan	Barrios	oui 10	1,0010	14,1000	71	\$	\$	10	oo alab
19	La Silla Coja	Unidos	CII. 79 #53-39	4,6743	-74,0719	16	1.250	19.375	15	20 días
. 5	=a oma ooja	01.11403	0 10 1/00 00	1,01 10	. 1,01.10		1.200	10.010	, 0	20 0.00

	N/I I	D					φ	ф		
	Mama Leo	Barrios	0 == == 10	4 0000	- 4 0-0-	4.0	\$	\$, _	00.1/
20	Restaurante	Unidos	Cra. 57 #70-12	4,6686	-74,0795	16	1.250	19.375	15	20 días
			Cra 52 # 128-	4,7132	-74,0590		\$	\$		
21	Plancha y sabor	Suba	12	4,7 132	-74,0390	41	750	30.375	15	30 días
			CII. 129 #58-37,				\$	\$		
22	Mar Valdez	Suba	Bogotá	4,7185	-74,0696	41	500	20.250	15	30 días
	Restaurante Exxus		- J	•	·		\$	\$		
23	de Mar	Suba	CII. 116 #71-39	4,6995	-74,0776	16	500	7.750	15	30 días
	Restaurante la	C 0.13 0.	Carrera. 78b	.,0000	,	. •	\$	\$		
24	Hormiga	Kennedy	#38-39 Sur	4,6213	-74,1517	16	500	7.750	15	30 días
24	Tiorriiga	rterificay	#30 33 Oui	7,0210	74,1017	10	\$	\$	10	50 dias
25	Dinasha Carbán	Contibón	CII 20 # 00 20	4,6748	-74,1427	16	•		15	20 díac
25	Pinocho Carbón	Fontibón	CII 20 # 99-20			10	750	11.625	15	30 días
	Restaurante Mesa		Cll. 25g #85c-	4,6755	-74,1205	4.0	\$	\$		00.1/
26	Gourmet	Fontibón	19, Bogotá	.,	,	16	750	11.625	15	30 días
			Cra. 106 #80A-				\$	\$		
27	Restaurante Sion	Engativá	78	4,7157	-74,1149	81	1.250	100.625	25	30 días
	Restaurante la		Cra. 82a #80-				\$	\$		
28	vecina	Engativá	98,	4,7022	-74,0975	81	1.250	100.625	25	20 días
	Panadería las	J		4.0750	74.0040		\$	\$		
29	acacias	Engativá	Cra. 69h #65-2	4,6756	-74,0948	81	500	40.250	25	30 días
	Panadería y		Ac 72 #103 A -				\$	\$		
30	cafetería river pan	Engativá	39	4,7058	-74,1189	96	2.750	262.625	25	20 días
00	carotoria rivor pari	Linguliva	00			00	2.700	202.020 ¢	20	20 0100
							Ф	Ф		
						4000	20.750	4 007 075	F00	
						1260	39.750	1.687.375	520	

4.8.2 Matriz de Distancia Mensual

En la matriz de distancia generada de acuerdo con los datos de la frecuencia de recolección mensual en la Tabla 19, se evidenció que la mínima distancia es de 0,3 kilómetros la cual está ubicada entre el punto 14(Restaurante sabroso chino) y el punto V15(Restaurante el rincón boyacense), y la distancia máxima encontrada es de 31 Kilómetros que se encuentran desde el punto 8(Asadero arde la brasa) hasta el punto V21(Plancha y sabor).

Tabla 19. Matriz de distancia prueba mensual.

	V0	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22	V23	V24	V25	V26	V27	V28	V29	V30
0	0	22	21	9,8	15	21	9,5	15	7,9	11	11	15	15	14	9,3	9,3	11	5,8	5,2	19	18	24	22	19	8,9	16	15	22	19	16	20
1	20	0	4,9	14	10	3,8	14	12	26	22	23	9,4	11	9,4	12	13	14	17	19	5	6,3	3,9	6,6	4,1	20	17	14	12	9,1	7,9	13
2	20	5,7	0	10	6,2	2,9	10	7,7	25	21	21	5,3	4,6	8,8	10	11	13	14	17	4,3	5,6	7,2	9,9	7,8	18	16	13	10	7,7	7,9	12
3	9,6	14	13	0	4,1	13	0,6	3,6	15	16	16	4,7	4,8	6,6	1,5	1,5	4,1	5	6,3	11	9,9	16	19	15	13	17	12	18	15	11	16
4	13	11	5,1	5,4	0	9,5	5,1	1,4	19	15	16	1,1	1,3	2,4	3,7	4,1	7	7,5	9,5	7,6	6,7	13	15	11	13	16	10	13	11	8,1	14
5	19	4,4	1,9	12	7,8	0	12	9,2	24	21	21	6,9	6,6	7,8	11	11	12	15	18	3,4	4,7	6	8,7	7,2	18	15	12	10	7,5	7,6	11
6	9,4	14	12	0,7	3,9	12	0	3,4	15	16	16	4,5	4,6	6,4	1,3	1,3	3,9	4,8	6	11	9,7	16	18	15	13	17	11	18	15	11	15
7	12	12	6,3	3,7	1,4	9,9	3,4	0	18	15	15	1,5	1,7	2,8	2,5	2,9	6,4	6,8	8,4	8,1	7,1	13	16	14	12	16	10	15	13	9,7	14
8	8,1	29	27	18	22	27	18	22	0	18	18	22	22	21	18	18	18	14	9	26	25	31	29	26	16	22	22	29	26	23	27
9	11	21	22	15	16	21	15	14	18	0	0,6	16	16	15	15	14	13	15	16	19	17	22	20	17	4,6	9,9	9,4	20	17	14	15
10	11	21	22	15	16	22	15	15	18	0,8	0	16	16	15	15	14	13	14	14	19	17	22	20	18	4,9	10	9,6	20	18	15	15
11	13	11	5,7	4,5	0,9	9,4	4,3	1,3	19	15	15	0	1	2	2,8	3,2	6,2	6,6	9,2	7,5	6,6	13	15	12	12	16	10	15	12	8,9	14
12	13	9,8	8,1	5,3	1,8	8	5	1,9	19	15	15	1	0	1,1	3,5	4	6,8	7,3	10	6,2	5,3	11	14	11	12	15	10	13	11	7,5	14

13	13	9,1	7,4	6,3	2,4	7,3	6,1	2,6	18	15	15	2	1,5	0	4,8	5,3	6,4	9,2	12	5,5	4,6	11	13	10	12	15	9,7	13	10	6,8	14
14	9,7	13	11	2,3	3,2	11	2	2,3	15	15	15	3,4	3,5	4,8	0	0,8	4	4,4	7,1	9,1	8,1	14	17	14	12	16	10	16	14	9,8	14
15	9,3	13	11	2	3,3	11	1,7	2,3	15	14	15	3,4	3,6	4,8	0,3	0	3,6	4	6,7	9	8,1	14	17	14	11	16	11	16	14	10	15
16	9,2	14	12	3,3	6,3	12	3	4,6	15	14	14	6,4	6,3	5,8	2,6	2	0	3,5	6,1	10	9,1	15	18	15	9,4	12	12	17	15	11	16
17	6,1	17	15	4,2	7	15	3,8	6,1	12	15	14	7,1	7,3	9	4	4	3,8	0	3,1	13	12	18	21	18	8,7	16	15	20	18	15	19
18	5,1	19	17	6,5	9,2	17	6	8,3	9	15	14	9,4	9,5	11	6,3	6,3	6,1	2,8	0	15	14	21	23	20	9,6	17	17	23	20	17	21
19	16	6	3,9	9,9	7,8	4,2	9,6	7,9	22	18	19	6,2	5,9	5,4	8,4	8,8	9,9	13	15	0	1,6	7,6	7,3	4,7	16	13	9,6	7,1	4,6	4,8	8,6
20	15	6,9	5,3	8,9	6,8	5,1	8,6	7	21	16	16	6,2	5,7	4,5	7,4	7,8	8,9	12	14	1,4	0	8,5	11	6	13	10	8,1	8,4	5,9	3,1	6,4
21	22	3,9	6,9	15	11	6,6	15	11	27	21	21	10	9,8	11	14	14	15	18	21	6,5	7,8	0	1,7	3,7	18	15	11	9,3	6,8	8,5	11
22	23	5,1	8,5	17	13	8,2	17	13	30	20	21	12	11	13	15	16	17	20	23	8,1	9,2	1,9	0	3,9	17	15	11	9	6,5	8,2	10
23	20	4	8,3	14	12	8,7	14	12	27	17	17	11	10	9,9	13	13	14	17	20	5,5	5,8	5	3,6	0	14	11	7,7	5,6	3	4,7	7
24	8	17	18	12	12	18	11	11	15	4,8	5	12	12	12	11	10	9,6	8,6	11	15	13	18	16	14	0	10	9,9	16	14	11	15
25	15	16	17	13	13	18	12	12	22	8,8	9	14	13	12	12	11	11	15	17	14	13	17	15	13	8,2	0	3,8	10	9	9,5	9,4
26	15	13	12	11	10	14	11	9,8	22	9,7	10	10	9,8	8,6	9,8	10	12	14	17	9,4	8,3	12	10	7,8	9,8	3,9	0	7,4	6,3	5,3	6,7
27	22	12	10	16	14	10	16	14	29	15	15	12	12	12	15	15	16	19	22	7,3	7,6	8,9	7,4	6,4	16	9,1	6,8	0	3,5	6,8	1,3
28	20	10	8,1	14	12	8,4	14	12	27	15	15	10	10	9,7	13	13	14	17	20	5,3	5,5	7,8	6,4	4,3	14	8,9	6,6	3	0	4,8	4,4
29	18	8,6	7,6	11	8,8	7,9	11	8,9	25	15	15	7,8	7,3	6,1	9,3	9,8	11	14	16	4,8	3,2	8,7	7,3	4,6	12	7,6	5,3	7,2	4,7	0	5,4
30	20	13	11	16	15	11	15	15	27	14	14	13	13	12	14	15	16	19	21	7,8	8,1	9,3	7,9	6,9	13	7,8	5,5	1,5	4	5,1	0

4.8.3 Matriz de Tiempo Mensual

En la matriz de tiempo de los datos de la frecuencia mensual en la Tabla 20, se identificó que el menor tiempo de recorrido fue de 2 minutos el cual se obtuvo del recorrido del punto 9(Mr. Dogs restaurante) al punto V10(Pastelería san Martín) y también se obtuvo

en el recorrido del punto 15(Restaurante el rincón boyacense) al V14(Restaurante sabroso chino), el tiempo máximo encontrado es de 70 minutos el cual está entre el recorrido del punto 22 (Mar Valdez) al punto V8(Asadero arde la brasa).

Tabla 20. Matriz de Tiempo prueba mensual.

	VO	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22	V23	V24	V25	V26	V27	V28	V29	V30
0	0	48	48	33	37	46	32	36	21	33	33	36	39	33	28	29	28	18	17	42	39	53	52	43	22	40	34	50	43	38	49
1	50	0	17	38	29	13	38	31	62	59	57	26	31	23	30	31	33	40	48	14	17	14	18	13	47	45	35	29	22	23	33
2	51	16	0	31	19	12	31	21	62	58	57	18	19	23	26	28	34	38	46	14	17	21	25	21	46	43	32	26	20	22	30
3	31	35	35	0	18	33	4	12	43	47	45	16	20	20	7	7	16	18	22	29	26	40	44	35	35	37	27	42	36	28	38
4	41	31	23	22	0	28	22	9	52	49	48	8	12	14	14	16	24	26	35	24	21	35	39	34	37	39	29	39	33	28	40
5	48	13	9	36	22	0	36	24	60	57	55	21	24	21	28	29	31	38	46	11	14	17	21	20	44	43	33	27	20	23	31
6	31	36	36	5	19	33	0	13	49	48	46	17	21	21	7	7	16	19	24	29	27	41	45	36	36	38	28	43	37	29	39
7	37	30	26	15	8	27	15	0	48	44	42	6	11	12	9	11	20	21	28	23	21	35	39	33	32	35	25	39	32	26	36
8	18	60	60	47	49	58	47	48	0	45	45	48	51	45	43	43	40	32	29	54	51	65	64	55	34	52	46	62	55	50	61
9	29	53	54	45	45	54	45	41	44	0	2	44	47	41	39	39	37	35	36	46	46	56	51	42	15	32	28	49	42	37	43
10	29	54	54	46	46	55	46	42	45	3	0	45	48	42	40	40	38	36	37	47	46	57	52	42	16	33	29	50	43	38	44
11	37	27	23	16	5	24	16	6	49	44	42	0	8	9	8	9	18	20	28	20	18	32	36	30	32	35	25	36	29	25	36
12	37	25	25	18	8	23	18	8	48	45	43	3	0	6	10	11	20	22	30	19	16	30	34	28	33	35	25	34	27	23	36
13	35	22	22	23	11	19	23	10	47	44	42	7	10	0	15	16	18	25	33	15	13	27	31	25	32	33	23	31	24	20	34
14	31	29	29	12	14	27	12	9	42	44	42	13	17	14	0	5	14	16	24	23	20	34	38	32	32	34	24	38	31	25	36
15	29	29	28	10	14	26	9	10	40	42	41	13	17	14	2	0	12	13	21	22	19	34	38	32	30	34	24	37	31	26	36
16	31	33	33	16	21	30	15	18	42	42	40	21	24	18	12	10	0	15	23	26	24	38	42	36	29	35	31	42	35	31	42

17	20	38	38	17	23	36	17	18	31	38	37	22	26	23	13	13	12	0	10	32	29	43	47	41	24	43	36	47	41	36	47
18	18	45	45	24	30	42	24	25	26	42	40	29	33	30	19	20	19	9	0	38	35	50	54	48	28	47	43	54	47	42	54
19	42	16	12	30	23	13	29	22	53	50	48	17	20	14	21	23	25	32	39	0	6	21	21	12	38	34	24	18	11	14	22
20	39	18	17	27	20	15	26	19	50	44	43	17	19	11	18	20	22	29	36	5	0	22	27	16	32	29	20	22	15	10	23
21	53	13	18	42	30	17	41	29	65	59	57	25	28	26	33	35	37	43	51	17	20	0	7	13	47	42	31	27	21	24	31
22	57	15	21	45	33	21	44	33	70	56	54	28	31	29	36	38	40	47	55	20	23	8	0	12	44	39	28	24	18	21	28
23	48	14	22	40	33	23	39	32	61	48	46	26	29	24	31	33	35	41	49	15	15	17	12	0	36	31	20	16	10	13	20
24	22	43	43	35	34	43	34	30	35	17	16	34	37	31	28	29	27	26	29	36	35	45	40	31	0	28	23	38	32	27	38
25	40	42	42	38	38	46	38	34	53	31	30	37	39	31	32	32	30	40	46	35	34	44	40	30	25	0	12	32	28	26	28
26	38	33	32	31	27	33	30	25	51	32	32	26	28	20	22	24	27	33	41	24	22	34	29	20	26	13	0	23	19	15	19
27	53	29	25	43	36	26	42	36	66	46	46	30	33	27	34	36	38	45	53	18	18	28	23	16	40	27	20	0	12	17	5
28	50	26	22	40	33	23	39	33	63	47	46	27	30	24	31	33	35	42	50	15	15	24	19	13	37	28	21	9	0	14	13
29	44	23	21	32	25	22	31	24	57	42	40	21	23	16	23	25	27	33	41	14	10	27	22	13	30	23	15	20	13	0	19
30	52	31	27	44	38	28	44	37	65	43	42	31	34	29	35	37	40	47	54	20	20	30	25	18	37	24	17	6	14	17	0

4.8.4 Ruta Óptima

De acuerdo con las matrices de distancia y tiempo obtenidas en la Tabla 19 y la Tabla 20, para recorrer los 29 puntos de la frecuencia de recolección quincenal, fue necesario realizar dos rutas óptimas como se muestra en la Tabla 21 teniendo en cuenta que la capacidad de los vehículos es de 800 litros. Con las rutas optimas obtenidas se recolectaron 1260 litros de aceite, recorriendo 137,97 Kilómetros con un tiempo de duración de 446,63 minutos lo que equivale aproximadamente a 7 horas y 26 minutos.

Tabla 21. Rutas óptimas prueba mensual.

Ruta Optima Mensual	Demanda(Its)	Distancia (Km)	Tiempo (Min)
0-4-29-20-19-5-2-1-22-21-23-28-27-30-26-25-9-10-24-0	794	90,68	281,41
0-17-16-15-14-12-13-11-7-3-6-18-8-0	466	47,29	165,22
Total	1260	137,97	446,63

4.8.5 Recorrido ruta óptima

Luego de obtener la información de las rutas óptimas y el orden para realizar la recolección de los puntos de la frecuencia mensual en la Tabla 21.En la Figura 16 se evidencia el recorrido que debe realizar el vehículo en cada una de las rutas que se obtuvieron.

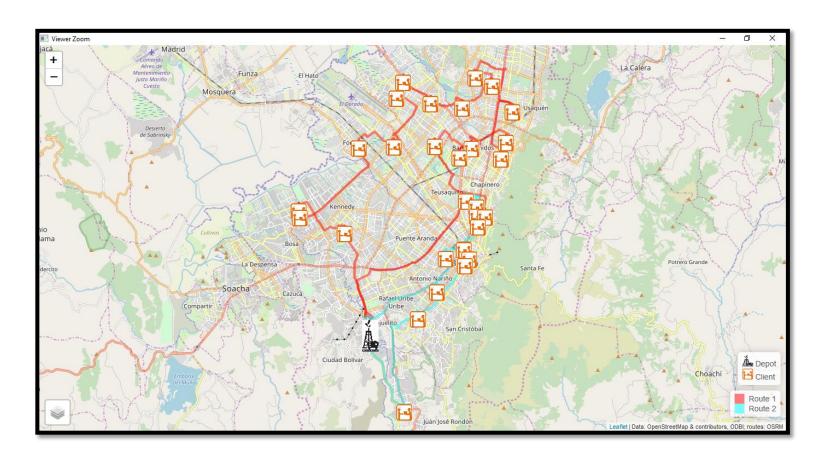


Figura 16. Ruta optima prueba mensual.

De acuerdo a la información de la Figura 17, se puede evidenciar que la ruta óptima 1 la cual esta identificada con color rojo, se visitaron 18 puntos con lo que se obtuvo una demanda de 794 litros de aceite, en donde se recorrieron 90,68 Kilometros y se realizo en 281,41 minutos.

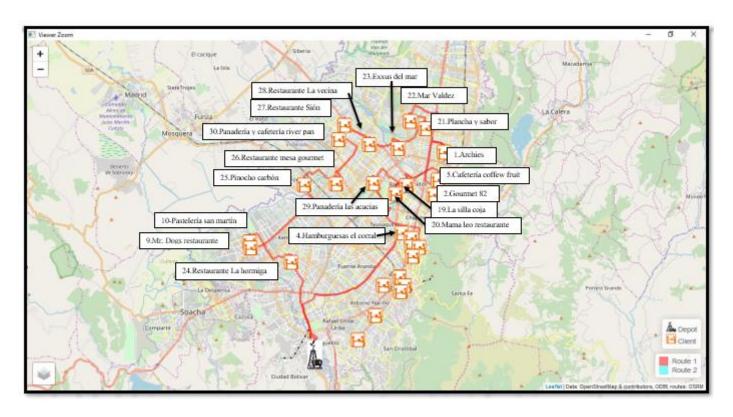


Figura 17. Ruta óptima 1 prueba mensual.

Según la Figura 18, se puede evidenciar que en la ruta optima 2 identificada con el color azul, se visitaron 18 puntos con lo que se obtuvo una demanda de 466 litros de aceite, en donde se recorrieron 47,29 Kilometros y se realizo en 165,22 minutos.

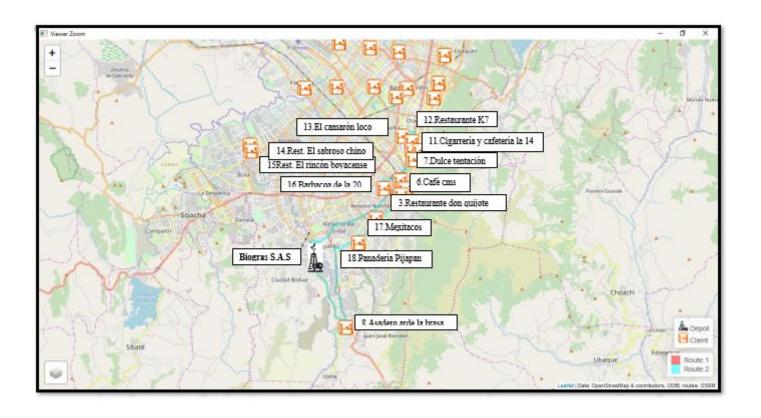


Figura 18. Ruta óptima 2 prueba mensual.

CAPÍTULO 5

4. ANALISIS DE LOS RESULTADOS

De acuerdo con la información obtenida a partir de optimización realizada en este trabajo, se realizó el análisis de los resultados teniendo en cuenta que la función objetivo es minimizar los costos de recolección de la ruta de Aceite vegetal usado en la ciudad de Bogotá.

Inicialmente se realizó el análisis del tiempo de cada uno de las rutas y la duración total de acuerdo con la demanda obtenida de los 82 clientes.

4.1 Tiempo Total Recorrido

Tabla 22. Resumen tiempo total recorrido.

Frecuencia de Recolección	Ruta óptima	Demanda (Litros)	Tiempo de Ruta (min)	Tiempo de Recolección (min)	Tiempo Total (min)
Semanal	0-15-3-4-2-1-13-16-14-17-21-22-23- 12-19-18-20-0	778	281,41	270	551,41
	0-10-5-8-7-11-6-9-0	483,5	165,22	145	310,22
0	0-6-4-19-3-5-1-2-20-21-22-26-29-27- 18-17-0	777,5	246,28	265	511,28
Quincenal	0-10-23-24-25-28-7-11-16-15-13-14- 8-12-9-0	727	202,03	250	452,03
Mensual	0-4-29-20-19-5-2-1-22-21-23-28-27- 30-26-25-9-10-24-0	794	281,41	330	611,41
ivierisuai	0-17-16-15-14-12-13-11-7-3-6-18-8- 0	466	165,22	190	355,22
Total		4.026	848,12	910	2791,57

Fuente: Elaboración propia

Con la información obtenida en la Tabla 22 se identificó que para recolectar 4.026 litros de aceite se requieren 2.791,57 minutos lo que equivale aproximadamente a 47 horas y media. Para determinar este tiempo se tuvo en cuenta, el tiempo total que tarda un vehículo en recorrer todas las rutas

óptimas, más el tiempo identificado de acuerdo con la cantidad de aceite que se recolecto en cada punto. Esta información permitió concluir que Biogras podría realizar su programación semanal, teniendo en cuenta el número de datos que se utilizaron para la programación de este modelo, con estos datos podría realizar pronósticos de tiempo lo que le permitiría realizar la programación de las rutas en una semana y en un mes.

4.2 Costo Total Kilómetros Recorridos

Otro factor importante que se tuvo en cuenta fue el costo total por los 848,12 Kilómetros recorridos para obtener los 4.026 litros de aceite como se evidencia en la Tabla 23. Para obtener este costo, se utilizó el valor del kilómetro que se obtuvo en el capítulo 2 correspondiente a \$3468 con lo que fue posible calcular el costo total de \$ 1.460.687.

Tabla 23. Costo total kilómetros recorridos.

Frecuencia de Recolección	Ruta óptima	Demanda (Litros)	Distancia (Km)	Costo Km (\$)	Costo total Km (\$)
Comonal	0-15-3-4-2-1-13-16-14-17-21-22-23- 12-19-18-20-0	778	102,56	\$ 3.468	\$ 355.678
Semanal	0-10-5-8-7-11-6-9-0	483,5	33,11	\$ 3.468	\$ 114.825
Quinconal	0-6-4-19-3-5-1-2-20-21-22-26-29-27- 18-17-0	777,5	84,32	\$ 3.468	\$ 292.422
Quincenal	0-10-23-24-25-28-7-11-16-15-13-14- 8-12-9-0	727	63,23	\$ 3.468	\$ 219.282
Managal	0-4-29-20-19-5-2-1-22-21-23-28-27- 30-26-25-9-10-24-0	794	90,68	\$ 3.468	\$ 314.478
Mensual	0-17-16-15-14-12-13-11-7-3-6-18-8-0	466	47,29	\$ 3.468	\$ 164.002
Total		4026	848,12	\$ 3.468	\$ 1.460.687

Fuente: Elaboración propia

4.3 Costo Total por aceite recolectado

El costo total del aceite se calculó en la Tabla 24, de acuerdo a la información de la cantidad de aceite que produce cada punto y el valor del litro asignado por cada cliente, el cual se evidencia en el Anexo 2. Los valores correspondientes fueron calculados de acuerdo con la ruta generada en cada una de las frecuencias de recolección, con lo que se obtuvo un costo total de \$5.213.250 para obtener una demanda de 4026 litros.

Tabla 24. Costo total por litro de aceite recolectado

Frecuencia de Recolección	Ruta Optima	Demanda	Costo total de litros	Costo total por ruta	
	0-15-3-4-2-1-13-16-14-17-21-22-23-	770	\$ 4.005.500	¢.	
Semanal	12-19-18-20-0	778	1.065.500	\$	
Ocmana	0-10-5-8-7-11-6-9-0	483,5	\$ 461.750	1.527.250	
	0-6-4-19-3-5-1-2-20-21-22-26-29-27-		\$		
Quincenal	18-17-0	777,5	1.154.125	\$	
Quincenai	0-10-23-24-25-28-7-11-16-15-13-14- 8-12-9-0	727	\$ 844.500	1.998.625	
	0-4-29-20-19-5-2-1-22-21-23-28-27-		\$		
Mensual	30-26-25-9-10-24-0	794	1.067.125	\$	
	0-17-16-15-14-12-13-11-7-3-6-18-8- 0	466	\$ 620.250	1.687.375	
Total		4026	\$ 5.213.250	\$ 5.213.250	

Fuente: Elaboración propia

El costo de recolección de aceite es el costo más significativo para el modelo, este costo esta dado por los puntos de recolección que se establecieron entre ellos restaurantes, cafeterías y puntos de comidas rápidas. El valor promedio de venta de aceite por los puntos utilizados en el modelo fue de \$.1235 con lo que además se determinó que el 100 % de estos puntos prefieren vender el aceite.

4.4 Costos Ruta de Recolección Bogotá

De acuerdo con la descripción de todos los factores que se tuvieron en cuenta en la programación del modelo, se obtuvo un costo total por un valor de \$6.673.937 como se observa en la Tabla 25, el valor se obtuvo de la programación de los 82 puntos ubicados geográficamente en las 19 localidades de la ciudad de Bogotá, recolectando 4.026 litros de aceite, recorriendo 8.848,12 Kilómetros en un tiempo de 279,57 minutos.

Tabla 25. Costos totales ruta óptima de recolección.

Grupos de Recolecció n	No. De puntos recolectado s	Demanda total	Km Totales	Tiempo Total	Costo total
Semanal	23	1261,5	135,67	861,63	\$ 1.997.754
Quincenal	29	1504,5	147,55	963,31	\$ 2.510.328
Mensual	30	1260	137,97	966,63	\$ 2.165.855
Total	82	4026	848,12	2791,57	\$ 6.673.937

Fuente: Elaboración propia

Con el resultado obtenido en la tabla 25, se logró identificar el costo total que se requiere para recolectar 4026 litros de aceite. Teniendo este dato fue posible calcular el costo óptimo de recolección de aceite vegetal usado en la ciudad de Bogotá, el cual se puede evidenciar en la Tabla 26.

Tabla 26. Costo óptimo.

Costo Total	Litros de aceite recolectados	Costo óptimo
\$ 6.673.937	4026	\$ 1.658

Fuente: Elaboración propia.

El valor obtenido en la Tabla 26 se obtuvo de los costos obtenidos de la relación del costo de recolección del aceite vegetal usado en los 82 puntos utilizados más el costo de los kilómetros recorridos para su recolección, dividiendo el resultado obtenido por la cantidad de litros que se recolectaron de acuerdo a los tres grupos de recolección que se conformaron, se obtuvo un costo de \$1658 como valor óptimo para la recolección.

Según (Araujo et al., 2010) el valor promedio de obtener el aceite en Rio de Janeiro es de \$814 y el valor por transportarlo es de \$407 con lo que determina un valor óptimo de \$1221 por la recolección de aceite vegetal usado hasta la planta de tratamiento, con lo que se puede determinar que el valor óptimo que se obtuvo en la presente investigación se encuentra acorde con el proceso de recolección realizado por Araujo y es un costo rentable para las empresas gestoras encargadas de realizar el proceso de recolección en la ciudad de Bogotá. Por otro lado, en estudio realizado en Cali por (Benavides & Lozano Moreno, 2018) se reporta un valor de \$966,83 en donde se recolectaron 52,09 galones en 12 puntos realizándolo en 2 días de la semana, de lo cual se puede deducir que al ser menos puntos y contando con una jornada laboral más amplia se aumenta el número de litros recolectados, así mismo se tiene en cuenta que la capacidad de los vehículos es mayor a la utilizada en la presente investigación.

Tabla 27. Comparación de precios con el aceite de palma crudo.

Periodo	Aceite de palma crudo	Aceite Vegetal usado
Primer semestre 2018	\$ 1.994	
Segundo semestre		\$ 1.658
2018	\$ 1.913	φ 1.050
Primer semestre 2019	\$ 1.755	

Fuente:(Fedepalma, 2018)

Realizando una comparación del costo obtenido por el modelo propuesto y el costo del aceite de palma crudo como se puede ver en la Tabla 27, se puede indicar que el costo del modelo propuesto es menor al costo del aceite de

palma en el último año, por lo que se considera que este valor es rentable para las empresas gestoras que tienen el aceite como materia prima para la producción de Biodiesel(Benavides & Lozano Moreno, 2018).

De acuerdo con los resultados obtenidos en este capítulo, se puede concluir que el modelo propuesto permitió realizar la programación para la recolección de aceite vegetal usado en 82 puntos ubicados geográficamente en las 19 localidades de Bogotá, en donde se realizó la creación de tres grupos de recolección teniendo en cuenta la frecuencia. A partir de los grupos creados se utilizaron varios parámetros para encontrar los datos más importantes obtenidos de la ejecución de cada una de las rutas. Con lo que se encontraron datos promedios que resultaron de la programación del modelo propuesto, con lo que se permite tener un acercamiento a la realidad para la programación de los 17008 puntos identificados como generadores de aceite vegetal en la ciudad de Bogotá.

Es por ello por lo que según la Tabla 28 se resume la información de las rutas obtenidas del modelo propuesto, con lo que se puede determinar que el incremento del número de vehículos utilizados para la recolección permitirá el incremento de los litros que se quieran obtener, así como el aumento en el número de clientes que se quieran visitar por ruta.

Tabla 28. Resultados finales programación modelo propuesto.

Grupo Semanal	Grupo Quincenal	Grupo Mensual	Resultados promedio
800 Ltrs	800 Ltrs	800 Ltrs	800 Ltrs
2	2	2	2
1261,5	1504,5	1260	1342
\$ 1.527.250	\$ 1.998.625	\$ 1.687.375	\$ 1.737.750
135,67	147,55	137,97	140,3966667
\$ 470.503	\$ 511.704	\$ 478.480	\$ 486.896
27	33	34	31
23	29	30	27
861 63	963 31	966 63	930,52
	Semanal 800 Ltrs 2 1261,5 \$ 1.527.250 135,67 \$ 470.503 27	Semanal Quincenal 800 Ltrs 800 Ltrs 2 2 1261,5 1504,5 \$ 1.527.250 \$ 1.998.625 135,67 147,55 \$ 470.503 \$ 511.704 27 33 23 29	Semanal Quincenal Mensual 800 Ltrs 800 Ltrs 800 Ltrs 2 2 2 1261,5 1504,5 1260 \$ 1.527.250 \$ 1.998.625 \$ 1.687.375 135,67 147,55 137,97 \$ 470.503 \$ 511.704 \$ 478.480 27 33 34 23 29 30

Tiempo total de recolección(hr)	14,36	16,06	16,11	15,51
Costo total de ruta	\$ 1.997.754	\$ 2.510.328	\$ 2.165.855	\$ 2.224.646

Fuente: Elaboración propia.

CAPÍTULO 6

6. CONCLUSIONES

- Para llevar a cabo la formulación del modelo matemático se logró identificar las variables más importantes que se encuentran asociadas en la ruta de recolección, entre ellas se encontraron: Punto de origen, puntos de recolección, vehículos, distancia, cantidad de vehículos, demanda, costo por litro, costo por Kilómetro, capacidad del vehículo, de los contenedores y del punto de origen, tiempo promedio de recolección, tiempo de horas de trabajo y tiempo de frecuencia de recolección.
- De acuerdo con la revisión de la literatura y la selección de métodos y técnicas de optimización, se desarrolló un modelo matemático para minimizar los costos operacionales de la ruta de recolección de aceite vegetal usado en la ciudad de Bogotá.
- Se realizó la optimización del modelo matemático planteado gracias al uso de la aplicación VRP Solver, la cual a partir del uso de dos metaheurísticas para la solución. En una de las metaheurísticas se emplea el método constructivo, con el algoritmo del ahorro y la otra una metaheurística de dos fases, utilizando el algoritmo de ramificación y acotamiento. Se encontró que el costo óptimo fue de \$1.658 por litro de aceite vegetal usado recolectado y transportado hasta la planta de Biogras en la ciudad de Bogotá.
- La aplicación utilizada para la programación del modelo matemático propuesto, basada en la técnica VRP, arrojó resultados significativos con lo cual se obtuvo la información de las rutas estratégicas y se determinaron factores importantes como la demanda recolectada,

kilómetros recorridos y tiempo utilizado, en la ejecución de cada una de las rutas.

7. BIBLIOGRAFIA

- Adarme, W., Fontilla, C., & Arango, M. D. (2011). Modelos logisticos para la optimizacion del transporte de racimos de fruto de palma de aceite en Colombia. *Ciencia e Ingeniería Neogranadina*, *21*, 89–114. https://doi.org/10.1016/j.catena.2011.03.007
- Agüero, S. D., García, J. T., & Catalán, J. S. (2015). Aceites vegetales de uso frecuente en Sudamérica: características y propiedades. *Nutricion Hospitalaria*, 32(1), 11–19. https://doi.org/10.3305/nh.2015.32.1.8874
- Albukrek, F., & Allaire, J. (2019). R Studio. Retrieved from https://www.rstudio.com/about/
- Alcaldia de Bogota. (2003). Resolución 1188 de 2003. Retrieved from https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=9846
- Araujo, V. K. W. S., Hamacher, S., & Scavarda, L. F. (2010). Economic assessment of biodiesel production from waste frying oils. *Bioresource Technology*, 101(12), 4415–4422. https://doi.org/10.1016/j.biortech.2010.01.101
- Benavides, A. N., & Lozano Moreno, J. A. (2018). Waste cooking oil logistics and environmental assessment for biodiesel production in Cali. *Revista Facultad de Ingeniería Universidad de Antioquia*, (88), 9–15. https://doi.org/10.17533/udea.redin.n88a02
- Bermeo Muñoz, E. A., & Calderón Sotero, J. H. (2009). Diseño de un modelo de optimización de rutas de transporte. *El Hombre y La Máquina*, 32(enero-junio), 52–67.
- Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999). *Applying the ant system to the vehicle routing problem. the vehicle routing problem.* University of Vienna, Vienna, Austria.
- Camac Gutierrez, J. D. (1994). Programacion Dinamica Dual Deterministica En El Despacho Hidrotermico.
- Casallas, I. D. (2017). Estudio de prefactibilidad técnico económica para la instalación de una planta procesadora de aceite usado de cocina obtenido en la ciudad de Bogotá Colombia. Universidad Santo Thomas.
- Castillo, E., Conejo, A. J., & Pedregal, P. (2002). Formulación y Resolución de Modelos de Programación matematica en Ingenieria y Ciencia.
- Castillo Patarroyo, L. C. (2012). Diseño de sistema logístico de transporte para la recolección de materiales reciclados en la localidad de engativá con la empresa compapeles milenium. Digital Times. Retrieved from http://www.dt.co.kr/contents.html?article_no=2012071302010531749001
- Castro, G. V. F. de, Castro, G. V. F. de, & Saldarriaga, J. G. (2005).

 Algoritmos de Optimización Combinatoria (AOC) aplicados al diseño de redes de distribución de agua potable. *Revista de Ingeniería*, *0*(22), 116–123. https://doi.org/10.16924/riua.v0i22.393
- Chediak Pinzón, F. A. (2013). *Investigación de operaciones* (Universida). Ibague, Colombia.

- Chica, M., & Cord, O. (2009). Heuristicas constructivas multiobjetivo para el problema de equilibrado de lineas de montaje considerando tiempo y espacio, (1), 649–656.
- Daza, M., Montoya, J., & Narducci, F. (2009). Resolución Del Problema De Enrutamiento De Vehículos Con Limitaciones De Capacidad Utilizando Un Procedimiento Metaheurístico De Dos Fases. *Revista EIA*, 23–38. https://doi.org/1794-1237
- Delgado Hidalgo, L., Hernán, H., & Díaz, T. (2010). Aplicación de un modelo de programación lineal en la optimización de un sistema de planeación de requerimientos de materiales (MRP) de dos escalones con restricciones de capacidad. *Ingeniería e Investigación*, 30(1), 168–173. Retrieved from http://www.scielo.org.co/pdf/iei/v30n1/v30n1a29.pdf
- El-Sherbeny, N. A. (2010). Vehicle routing with time windows: An overview of exact, heuristic and metaheuristic methods. *Journal of King Saud University Science*, 22(3), 123–131. https://doi.org/10.1016/j.jksus.2010.03.002
- Fedepalma. (2018). Federación Nacional de Biocombustibles en Colombia. Retrieved from http://www.fedebiocombustibles.com/nota-web-id-2994.htm
- Feitó Cespón, M., Cespón Castro, R., & Rubio Rodríguez, M. A. (2016). Modelos de optimización para el diseño sostenible de cadenas de suministros de reciclaje de múltiples productos. *Ingeniare. Revista Chilena de Ingeniería*, 24(1), 135–148. https://doi.org/10.4067/S0718-33052016000100013
- Fernando-navas, D., & Echeverry-ibarra, D. F. (2012). Evaluación del uso de un aceite vegetal en transformadores de distribución, *20*, 185–190. https://doi.org/10.4067/S0718-33052012000200005
- General Motors Colmotores. (2018). Chevrolet, Van de carga N300. Retrieved from https://www.chevrolet.com.co/vanes/n300-van-de-carga
- Gonzalez Alzate, L. J., & Gonzalez Reyes, M. (2013). *Planeación,* programación de rutas y gestión de inventarios para la comercializadora ig artipan eu. Universidad Libre.
- González, I., & González, J. A. (2015). Aceites usados de cocina. problemática ambiental, incidencias en redes de saneamiento y coste del tratamiento en depuradoras. *Aguasresiduales.Info*, 1–8. Retrieved from http://www.aguasresiduales.info/revista/articulos/problematica-ambiental-incidencias-en-redes-de-saneamiento-y-coste-del-tratamiento-en-depuradoras-de-los-aceites-usados-en-cocina
- Guevara Parada, J. A., & Vargas Saavedra, A. M. (2014). *Diseño e implementación de rutas de recolección de residuos hospitalarios para la empresa edepsa s.a.s.* Universidad Industrial de Santander.
- Hernandez Ortiz, A. (2016). Diseño de un sistema de ruteo de vehiculos con multiples depositos en Empresas de transporte de cargas. Universidad Distrital Francisco Jose de Caldas.
- Hillier, F. S., & Lieberman, G. J. (2010). *Introducción a la Investigación de Operaciones* (9th ed.). Mexico, D.F.: Mc Graw Hill.
- Hillier, F. S., & Lieberman, G. J. (2014). Fundamentos de Investigación de Operaciones (McGraw-Hil). Mexico.
- Laporte, G., Toth, P., & Vigo, D. (2013). Vehicle routing: historical perspective and recent contributions. *EURO Journal on Transportation and Logistics*,

- 2(1-2), 1-4. https://doi.org/10.1007/s13676-013-0020-6
- León, P., & Gallardo, P. (2015). Vehicle Routing Problem Solver. Retrieved from https://transporte-iner.shinyapps.io/cvrp_solver/
- López, L., Bocanegra, J., Malagón-romero, D., López, L., Bocanegra, J., & Malagón-romero, D. (2015). Obtención de biodiesel por transesterificación de aceite. *Ingeniería y Universidad*, *19*(1), 155–172. https://doi.org/10.11144/Javeriana.iyu19-1.sprq
- Mediorreal, A. (2014). Modelo de ruteo de vehículos para la distribución de las empresas Laboratorios Veterland, Laboratorios Callbest y Cosméticos Marlioü París. Pontificia Universidad Javeriana.
- Medr, S., & Santana, A. E. (2017). Resolución heurística de un problema de rutado con aplicaciones para el comercio electrónico.
- Mejía, C. A. Z. (2009). Metodología de diseño para la recogida de residuos solidos urbanos mediante factores punta de generación: Sistemas de caja fija (SCF). *Ingenieria e Investigacion*, *29*(2), 119–126.
- Ministerio Ambiente y Desarrollo Sostenible. (2018a). Ministerio de Ambiente reglamenta disposición de aceites de cocina usados en el país. Retrieved from http://www.minambiente.gov.co/index.php/noticias/3673-ministerio-de-ambiente-reglamenta-disposicion-de-aceites-de-cocina-usados-en-el-pais
- Ministerio Ambiente y Desarrollo Sostenible. Resolución 316 de 2018-.pdf (2018).
- Ministerio de Transporte. (2015). Sistema de Información de Costos Eficientes para el transporte de carga. Retrieved from http://sicetac.mintransporte.gov.co:8080/sicetacWeb/#!/auth/login
- Muñoz Ciro, E., Montoya Escobar, D., & Muñoz Rivera, A. (2017).
 Planteamiento y solución de la problematica de los aceites usados en Colombia. Colombia.
 https://doi.org/https://issuu.com/fundacionconvida/docs/informe_aceites_usados en colombia
- Murcia Ordoñez, B., Chaves, L. C., & Rodríguez-pérez, W. (2013).

 Caracterización de biodiesel obtenido de aceite residual de cocina.

 Revista Colombiana de Biotecnología, 15(1), 61–70. https://doi.org/1078-0432.CCR-12-0452 [pii]\r10.1158/1078-0432.CCR-12-0452
- Ocaña, R., & Ramirez, C. (2012). Diseño de un Modelo matemático para resolver problemas de ruteo vehicular capacitado con ventanas de tiempo, con la aplicación del algoritmo de Clarke & Wright. Caso de estudio: Empresa de servicios de courier de la ciudad de Guayaquil. Escuela Superior Politecnica de Litoral.
- Olivera, A. (2004). Heuristicas para el Problema de Ruteo -2004. Universidad de la Republica Uruguay.
- Pastor, J. M. (2013). Optimización de la localización y recogida de residuos sólidos urbanos.
- Preciado, A. (2017). Evaluación del Aceite Reciclado de Cocina para su Reutilización.
- Producciones generales S.A. (1968). Progen. Retrieved from https://www.progen.com.co/envasesplasticos
- Ramos, A. (1993). Investigación Operativa y Optimización. *Universidad Pontificia Comillas Madrid*. Madrid. Retrieved from https://www.iit.comillas.edu/aramos/simio/transpa/t mod1 ar.pdf

- Restrepo, J. E. (2012). El desarrollo sostenible y el reciclaje del aceite usado de cocina a la luz de la jurisprudencia y el ordenamiento jurídico colombiano *, 7(1), 109–122.
- Reyes, R. (2005). Diseño del Programa de recolección de desechos sólidos domiciliarios para el Municipio de Atizapán de Zaragoza como aplicación del problema del Agente Viajero. *Tesis de Maestría*, *Mexico*.
- Rivera Cubides, L. (2016). Modelo matematico exacto del problema de ruteo de vehículos eléctricos considerando entrega y recogida de mercancía.
- Rocha, L., Gonzalez, E., & Orjueña, J. (2011). Una Revisíon del estado del arte del problema de Ruteo de vehiculos: Evolución historica y metodos de solución. Seventh International Symposium on Precision Engineering Measurements and Instrumentation, 8321(2), 83213U. https://doi.org/10.1117/12.905506
- Sanchez Garcia, M. (2005). *Optimización Combinatoria*. Sociedad Canaria de Profesores de Matematicas.
- Sanchez, P., Ferrer, J. M., Barquin, J., Linares, P., & Ramos, A. (2010). Modelos Matematicos de Optimización. Universidad Pontificia ICAI.
- Schuchardt, U., Sercheli, R., & Matheus, R. (1998). Transesterification of Vegetable Oils: a Review General Aspects of Transesterification Transesterification of Vegetable Oils Acid-Catalyzed Processes Base-Catalyzed Processes. *J. Braz. Chem. Soc.*, *9*(1), 199–210. https://doi.org/10.1590/S0103-50531998000300002
- Shamblin, J. (1982). *Investigación de Operaciones Un enfoque Fundamental.* (M.-H. de M. C.V, Ed.) (Operations). Mexico.
- Toro, E. M., Escobar, A. H., & Granada, M. (2015). Literature Review on the Vehicle Routing Problem in the Green Transportation Context. *Luna Azul*, (42), 362–387. https://doi.org/10.17151/luaz.2016.42.21
- Toth, P., & Vigo, D. (2000). The Vehicle routing problem. In H. Peter, RUTCOR, & Rutgers (Eds.), *The Vehicle routing problem* (Society fo). Bologna, Italy: Society for Industrial and Applied Mathematics.
- Ulloa Murcia, J. M. (2015). Estado del arte de los modelos de optimización en la logistica urbana de mercancias. Journal of Visual Languages & Computing. Universidad Industrial de Santander.
- Valenzuela, A., & Morgado, N. (2005). Las Grasas Y Aceites En La Nutricion Humana. *Revista Chilena de Nutrición*, 32(2), 187. https://doi.org/10.1111/j.0963-7214.2004.00657.x
- William, Jayawickreme, E., Jones, A. B. A. P., Brown, N. A., Serfass, D. G., Sherman, R. A., ... Matyjek-, M. (2017). *Evaluación de diferentes estrategias de recolección de aceite usado de cocina para producir biodiesel en la ciudad de Cali. Journal of Personality and Social.* https://doi.org/10.1111/j.1469-7610.2010.02280.x

ANEXOS

ANEXO 1. ENCUESTA UTILIZADA EN EL ESTUDIO DE PREFACTIBILIDAD

ENCUESTA SOBRE LA PRODUCCIÓN DE ACEITE DE COCINA USADO EN BOGOTÁ LA INFORMACIÓN CONSIGNADA EN TODOS LOS FORMULARIOS DE LA UNIVERSIDAD SANTO TOMAS, YA SEA EN PAF POR MEDIO MAGNÉTICO, SE TRATARÁ DE MANERA CONFIDENCIAL Y SE UTILIZARÁ EXCLUSIVAMENTE CON FINE ESTADÍSTICOS, ACADÉMICOS Y CIENTÍFICOS Buenos días/tardes, mi nombre es	
LA INFORMACIÓN CONSIGNADA EN TODOS LOS FORMULARIOS DE LA UNIVERSIDAD SANTO TOMAS, YA SEA EN PAPPOR MEDIO MAGNÉTICO, SE TRATARÁ DE MANERA CONFIDENCIAL Y SE UTILIZARÁ EXCLUSIVAMENTE CON FINE ESTADÍSTICOS, ACADÉMICOS Y CIENTÍFICOS Suenos días/tardes, mi nombre es, soy estudiante de la universidad Santo Tomas. Estame realizando una práctica académica sobre PRODUCCIÓN DE ACEITE DE COCINA USADO EN BOGOTÁ. Por favor permitoreguntarle: INFORMACIÓN RESTAURANTE NOMBRE DEL RESTAURANTE NOMBRE DEL ENTREVISTADO DIRECCIÓN DEL RESTAURANTE TELÉFONO	
POR MEDIO MAGNÉTICO, SE TRATARÁ DE MANERA CONFIDENCIAL Y SE UTILIZARÁ EXCLUSIVAMENTE CON FINE ESTADÍSTICOS, ACADÉMICOS Y CIENTÍFICOS Buenos días/tardes, mi nombre es	
ESTADÍSTICOS, ACADÉMICOS Y CIENTÍFICOS Suenos días/tardes, mi nombre es	
Ruenos días/tardes, mi nombre es	S
INFORMACIÓN RESTAURANTE NOMBRE DEL RESTAURANTE NOMBRE DEL ENTREVISTADO DIRECCIÓN DEL RESTAURANTE TELÉFONO TIPO DE RESTAURANTE 1. ¿Cuántos litros de aceite usado genera al mes? 1. ¿Cuántos litros 2. 31-50 litros 3. 51-70 litros 4. 71-90 litros 6. ¿La entidad recolectora le expide un certifica	
INFORMACIÓN RESTAURANTE NOMBRE DEL RESTAURANTE NOMBRE DEL ENTREVISTADO DIRECCIÓN DEL RESTAURANTE TELÉFONO TIPO DE RESTAURANTE 1. ¿Cuántos litros de aceite usado genera al mes? 1. ¿Cuántos litros 2. 31-50 litros 3. 51-70 litros 4. 71-90 litros 6. ¿La entidad recolectora le expide un certifica	ame
NOMBRE DEL RESTAURANTE NOMBRE DEL ENTREVISTADO DIRECCIÓN DEL RESTAURANTE TELÉFONO TIPO DE RESTAURANTE 1. ¿Cuántos litros de aceite usado genera al mes? 1. ¿Cuántos litros 2. 31-50 litros 3. 51-70 litros 4. 71-90 litros 6. ¿La entidad recolectora le expide un certifica	
NOMBRE DEL ENTREVISTADO DIRECCIÓN DEL RESTAURANTE TELÉFONO TIPO DE RESTAURANTE 1. ¿Cuántos litros de aceite usado genera al mes? 1. ¿Cuántos litros 2. 31-50 litros 3. 51-70 litros 4. 71-90 litros 6. ¿La entidad recolectora le expide un certifica	
PREGUNTAS 1. ¿Cuántos litros de aceite usado genera al mes? 1. 1-30 litros 2. 31-50 litros 3. 51-70 litros 4. 71-90 litros 6. ¿La entidad recolectora le expide un certifica	\Box
PREGUNTAS 1. ¿Cuántos litros de aceite usado genera al mes? 1. 1-30 litros 2. 31-50 litros 3. 51-70 litros 4. 71-90 litros 6. ¿La entidad recolectora le expide un certifica	\exists
PREGUNTAS 1. ¿Cuántos litros de aceite usado genera al mes? 1. 1-30 litros 2. 31-50 litros 3. 51-70 litros 4. 71-90 litros 6. ¿La entidad recolectora le expide un certifica	+
PREGUNTAS 1. ¿Cuántos litros de aceite usado genera al mes? 5. Valor por litro \$ 1 1-30 litros 2 31-50 litros 3 51-70 litros 4 71-90 litros 6. ¿La entidad recolectora le expide un certifica	
1. ¿Cuántos litros de aceite usado genera al mes? 5. Valor por litro 1 1-30 litros 2 31-50 litros 3 51-70 litros 4 71-90 litros 6. ¿La entidad recolectora le expide un certifica	sta
1. ¿Cuántos litros de aceite usado genera al mes? 5. Valor por litro 1 1-30 litros 2 31-50 litros 3 51-70 litros 4 71-90 litros 6. ¿La entidad recolectora le expide un certifica	
1. ¿Cuántos litros de aceite usado genera al mes? 5. Valor por litro 1 1-30 litros 2 31-50 litros 3 51-70 litros 4 71-90 litros 6. ¿La entidad recolectora le expide un certifica	
\$ 1 1-30 litros 2 31-50 litros 3 51-70 litros 4 71-90 litros 6. ¿La entidad recolectora le expide un certifica	Ŧ
1 1-30 litros 2 31-50 litros 3 51-70 litros 4 71-90 litros 6. ¿La entidad recolectora le expide un certifica	
2 31-50 litros 3 51-70 litros 4 71-90 litros 6. ¿La entidad recolectora le expide un certifica	
3 51-70 litros 6. ¿La entidad recolectora le expide un certifica	_
5 91-100 litros do de uso final del aceite?	-
2 22 200 mm cs	
6 101-150 litros	
1 Si	
2 No	
2. ¿Realizan la separación de los residuos del	
aceite en su establecimiento ?	
7. ¿Cada cuánto la empresa realiza la recolecci	ón
1 Si del aceite?	
2 No	
	_
3. ¿Qué hace con el aceite después de usalo en 8. ¿Tiene conocimiento sobre los productos que	e se
la cocina? pueden obtener a partir de aceite de cocina u	ısado
1 Verterlo por el lavaplatos Pase a 1 Si	
2 Arrojalo a la basura con otros residuos preg 8 2 No	
	_
3 Reenvarsalo y llevarlo a un lugar de acopio	_
4 Reenvarsalo y venderlo a quien lo recoja	, .
9. Permitiria que se llevara a cabo la Recolecci	
aceite de cocina usado, con fines de reciclaje establecimiento?	en si
4. Nombre de la empresa que lo recoge	
4. Nombre de la empresa que lo recoge	
2 No	

Anexo 1. Encuesta utilizada en el estudio de prefactibilidad.

Fuente:(Casallas, 2017)

ANEXO 2. BASE DE DATOS PUNTOS GENERADORES PARA PROGRAMACIÓN MODELO PROPUESTO

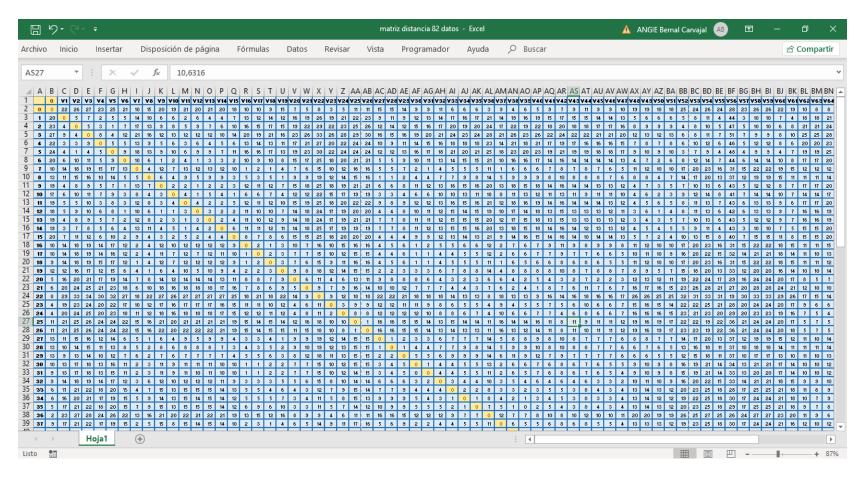
No	Puntos de Recolección	Localida d	Dirección	Latitu d	Longitu d	Litros de aceite	capacidad de los contenedo res	cada	esto por a litro de aceite	Tiempo promedio de recolección(min)	Tiempo de frecuencia para realizar la recolecció n
0	Biogras S.A.S	Tunjuelit o	Crr. 18 A Bis # 58 - 78 Sur	4,562 3	- 74,1355						
			CII 116 # 17-	4,697	-						
1	Archíes	Usaquen	13	•	74,0463	16	30 litros	\$	2.750	15	30 días
				4,718	-						
2	Burger King	Usaquen		4	74,0340	61	70 litros	\$	1.250	15	7 días
	Delicias		Cra 19 #	4,746	-						
3	Gourmet	Usaquen	166-51	4	74,0418	41	50 litros	\$	1.250	15	15 días
	Sepúlveda		OII 447 # Fa	4 000							
4	Bar- Restaurante	Usaquen	CII 117 # 5a- 13	4,693 8	74,0307	16	30 litros	\$	500	15	7 días
4	Restaurante	Usaqueii	Cll 140 #15a-	4,722	74,0307	10	30 111108	φ	300	10	7 ulas
5	Burguesa	Usaquen	38		74,0434	81	90 litros	\$	1.250	25	15 días
	Dargacca	Coaquon	CII 82 # 12	4,667	- 1,0101	01	00 1111 00	Ψ	1.200	20	ro alao
6	Gourmet 82	Chapinero		8	74,0533	96	120 litros	\$	500	25	20 días
	Restaurante		Cra. 9 #12-	4,601	_						
7	Don quijote	Chapinero	94	1	74,0760	16	30 litros	\$	750	15	20 días
	Hamburgues			4,631	-						
8	as el Corral	Chapinero	Cra 6 #45-22	5	74,0634	61	70 litros	\$	2.750	15	30 días

	Provocacione		AC 85 # 19A-	4,671	-						
9	S	Chapinero	42	6	74,0581	41	50 litros	\$	750	15	15 días
	Pizza		Cra11#71-	4,656	-						
10	Gourmet	Chapinero			74,0589	61	50 litros	\$	750	15	10 días
	Pizza pizza		CII 100 # 31-	4,683	-						
11		Chapinero			74,0461	41	50 litros	\$	750	15	10 días
	Dunkin		Cra. 19a	4,665							,
12	Donats	Chapinero			74,0600	16	30 litros	\$	1.250	15	7 días
4.0	Cafetería		CII . 93b #16-	•	74.0500	4.0	00 111	Φ.	0.050	4 =	00.11
13	Coffe fruit	Chapinero			74,0502	16	30 litros	\$	2.250	15	30 días
4.4	Danina	Chaninana	CII 97 #23-	4,685	74.0574	4.0	00 litra a	Φ	4.050	4.5	7 4/00
14	. ,	Chapinero	60	U	74,0571	16	30 litros	\$	1.250	15	7 días
	La divina			4 652							
15	comedia pizzería	Chaninara	CII 71 # 5-75	4,653 6	74,0549	41	50 litros	\$	750	15	15 días
13	pizzeria	Chapinero	Cra 7 # 22 -	4,608	74,0549	41	50 111105	φ	750	15	15 ulas
16	Sabrosito	Santafe	85	•	74,0706	126	150 litros	\$	1.250	25	7 días
10	Gabiosito	Santare	00	3	7-7,0700	120	150 11105	Ψ	1.200	20	7 dias
	Restaurante		Cra. 13 #12-	4,612	_						
17	Tasca Madrid	Santafe	23	•	74,0716	61	70 litros	\$	750	15	15 días
				4,605	-			Ψ			
18	Café cms	Santafe	CII. 18 # 8 33	•	74,0731	16	30 litros	\$	750	15	30 días
	Dulce		CII. 37 # 13	4,625	-						
19	tentación	Santafe	26	2	74,0679	16	30 litros	\$	1.250	15	20 días
		San	CII 26 # 6 30	4,594	-						
20	El caporal	Cristóbal	sur	3	74,1155	96	120 litros	\$	750	25	15 días
	Manantial del	San	Cra 5 a # 35	4,564	-						
21	sabor	Cristóbal	07	3	74,0996	41	50 litros	\$	750	15	15 días

	Asadero Arde		Ak. 1 #80	4,509	-						
22	La Brasa	Usme	Sur-10		74,1141	81	90 litros	\$	750	25	20 días
	La Danza Del		Cra. 25 #53	4,578	-						
23	Chivo	Tunjuelito			74,1375	61	70 litros	\$	750	15	15 días
			Diag 53 # 49	4,586							
24	Dely Frito	Tunjuelito		0	74,1465	81	90 litros	\$	2.250	25	7 días
0.5	Mr. Dogs	Dana	CII 49S #	4,631	-	0.4	00 !!	Φ	4.050	05	00 -1/
25	restaurante	Bosa	88c- 25		74,1798	81	90 litros	\$	1.250	25	30 días
26	Pastelería San Martin	Bosa	CII 49S # 90 A - 09	4,635	74,1805	16	30 litros	\$	2.750	15	30 días
20	Cigarrería y	БОЗа	A - 09	4	74,1005	10	30 111108	φ	2.750	15	30 ulas
	cafetería la	Teusaguill	CII 44 # 14-	4,631	_						
27	14	0	46	9	74,0685	41	50 litros	\$	750	15	30 días
	Restaurante	Teusaquill	Cra.16A #	4,637	-			,			
28	K7	o ·	49-70		74,0689	61	70 litros	\$	2.250	15	30 días
	El camarón	Teusaquill	CII 52A # 25-	4,641	-						
29	loco	0	65	4	74,0752	61	70 litros	\$	2.750	15	30 días
	Restaurante										
	Sabroso		CII. 22 #15-	4,611							22.14
30	Chino	Mártires	23, Bogotá	3	74,0762	41	50 litros	\$	750	15	30 días
	Restaurante		0 40 #00	4.040							
31	El Rincón Boyacense	Mártires	Cra. 16 #20- 46	4,610 9	74,0767	41	50 litros	\$	750	15	30 días
31	Barbacoa De	Martines	Cra. 20 #10-	4,605	-	41	30 111105	Ψ	730	13	30 ulas
32	La 20	Mártires	15,	7,003	74,0880	41	50 litros	\$	750	15	20 días
		Antonio	Cra 12B #	4,584	- 1,3003		00	Ψ	, 00		20 3100
33	Mexitacos	Nariño	11-04 Sur	5	74,0935	16	30 litros	\$	2.750	15	30 días
		Antonio	Clle 18 #22-	4,585	-						
34	Mis carnitas	Nariño	75sur	1	74,1010	81	90 litros	\$	2.250	25	7 días

	El Imperio	Antonio	CII 21S #18-	4,583	-						
35		Nariño	28, Bogotá	2	74,1035	41	50 litros	\$	750	15	7 días
	Panadería	Ciudad	Cra. 19 #64	4,558	-						
36		Bolívar	Sur-57	3	74,1448	16	30 litros	\$	500	15	5 días
	Bonaparte	Candelari	Cra. 8 #11-	4,599	-	4.0	00 !!!	•	=00		4 = 17
37		a	59	0	74,0762	16	30 litros	\$	500	15	15 días
00	Tamales	Rafael	Cll 28a sur #	4,577	74.4000	0.4	00 !!	Φ.	500	05	7 -1(
38		Uribe	15 - 19	1 - 2 1	74,1083	81	90 litros	\$	500	25	7 días
20	Panadería	Rafael	Av calle 22	4,584	74.4050	4.4	CO litua a	Φ	4.050	4.5	45 dia-
39		Uribe	sur # 20 - 53	0	74,1050	41	50 litros	\$	1.250	15	15 días
40	Panadería	Rafael	Cra 11b # 36	4,567	74.4050	4.4	50 litus s	Φ	4.050	45	00 4/5-
40	J - 1	Uribe	sur - 13	8	74,1056	41	50 litros	\$	1.250	15	30 días
	Humo	D	011 01 1/44	4.040							
4.4	Carbón y	Puente	CII. 3b #41-	4,613	74 4447	4.4	50 litro	Φ	4.750	4.5	40 dia-
41	sabor	Aranda	01, Bogotá	7	74,1117	41	50 litros	\$	1.750	15	10 días
40	El rey	Puente	Cra. 52a #29	4,605	74.4075	4.4	50 litro	φ	0.750	4.5	45 dia-
42		Aranda	- 16	3	74,1275	41	50 litros	\$	2.750	15	15 días
	Abierto										
	Amigo Chino Ciudad	Duanta	Cra. 36 #0-	4 602							
43		Puente Aranda	21	4,602 9	74,1112	61	70 litros	\$	750	15	7 días
43	Restaurante	Alaliua	21	9	74,1112	01	70 111105	Ψ	730	13	<i>I</i> ulas
	La Piedra De	Puente	Cra. 66 #12-	4,634	_						
44		Aranda	45	4,034	74,1179	41	50 litros	\$	750	15	7 días
44	Pare aquí	Puente	Cll. 1h #36-	4,606	74,1173	71	30 11103	Ψ	730	13	7 dias
45	•	Aranda	35	4,000	74,1092	16	30 litros	\$	1.250	15	15 días
70	Panadería La	Puente		4,602		10	50 III 03	Ψ	1.200	10	10 dias
46		Aranda	CII. 1f #32-13	5	74,1061	16	30 litros	\$	1.250	15	10 días
.0	Dogotarita	, trainad	O 11 // O.Z. 10	J	, 1, 1001	10	30 111 00	Ψ	1.200	10	10 diao

		Puente	Cra. 31c N5-	4,607							
47	Torti pava	Aranda	04	4,007	74,1014	16	30 litros	\$	500	15	10 días
• •	Tota pava	Barrios	Cll. 79 #53-	4,674	-	. 0	00 mm00	Ψ			10 0.00
48	La Silla Coja	Unidos	39	3	74,0719	16	30 litros	\$	1.250	15	20 días
	David	Barrios	Cra. 64 #77-	4,678	-			,			
49	Broaster	Unidos	02	2	74,0798	41	50 litros	\$	1.250	15	15 días
	Broaster Y	Barrios	CII. 74 #20A-	4,662	-						
50	Delicias	Unidos	68	6	74,0626	16	30 litros	\$	1.750	15	10 días
	Mama Leo	Barrios	Cra. 57 #70-	4,668	-						
51	Restaurante	Unidos	12	6	74,0795	16	30 litros	\$	1.250	15	20 días
	Restaurante		Cra. 53	4,722	-						
52	Kassata	Suba	#134d 75	4	74,0576	126	150 litros	\$	1.250	25	15 días
			Cra 127 #	4,735	-						
53	Alondra	Suba	24-63	3	74,0854	61	70 litros	\$	750	15	5 días
	Maxi tacos y		Cra. 110b	4,741	-						
54	broaster	Suba	#136a-10	6	74,1027	126	150 litros	\$	2.750	25	5 días
	Plancha y		Cra 52 #	4,713	-			4			
55	sabor	Suba	128-12	2	74,0590	41	50 litros	\$	750	15	30 días
		0.1	Trans. 91 #	4,735	= 4 00=0		=0.114	•	==0		4 = 14
56	La fogata roja	Suba	136 -60	2	74,0853	41	50 litros	\$	750	15	15 días
	01	0.1.	Autopista	4,706	74.0540	00	400 111	Φ.	0.050	05	7 1/
57	Chopinar	Suba	Nte. #125-97	3	74,0546	96	120 litros	\$	2.250	25	7 días
	CyS Cocina	O. de a	Cra 104 #	4,748	74.0054	40	00 114	Φ	500	45	45 -1/
58	Colombiana	Suba	148-07	6	74,0954	16	30 litros	\$	500	15	15 días
50	DDC	Cuba	Cra 104 #	4,748	74.0054	11	EO litros	¢	500	15	7 díos
59	PPC	Suba	148-07	6	74,0954	41	50 litros	\$	500	15	7 días
60	Mar Valdoz	Subo	CII. 129 #58-	4,718 5	74.0606	11	50 litros	æ	500	15	20 días
60	Mar Valdez	Suba	37, Bogotá	5	74,0696	41	50 litros	\$	500	15	30 días


	Dootouronto		CII 446 #74	4 600							
61	Restaurante Exxus de Mar	Suba	CII. 116 #71- 39	4,699 5	74,0776	16	30 litros	\$	500	15	30 días
0.	Lunch	Cuba	Cll 6 Bis #	4,633	- 1,0176	. 0	0000	Ψ	000		o o a a a o
62	Express	Kennedy	79-13	7,000	74,1501	61	70 litros	\$	750	15	7 días
	Parador doña		Cra 72 bis #	4,622	-			· ·			
63	Olga	Kennedy	6-04	6	74,1439	16	30 litros	\$	750	15	5 días
	Kapry		CII 57B#71D-	4,599	-						
64	broaster	Kennedy	70	8	74,1642	81	90 litros	\$	1.250	25	15 días
	Comidas			4,639	-						
65	rápidas taty	Kennedy	Cll 5a 87a-14	9	74,1605	61	70 litros	\$	500	15	15 días
			Dg. 5a #	4,627	_						
	Hot y french		73B-27,	0	74,1425						
66	pizza	Kennedy	Bogotá	U	77,1720	41	50 litros	\$	750	15	7 días
	_		Calle 43 Sur								
	Restaurante		# 78n-10,	4,617	-						
67	Don Jorge	Kennedy	Bogotá	7	74,1638	96	120 litros	\$	750	25	5 días
	Restaurante		Carrera. 78b	4,621	-						
68	la Hormiga	Kennedy	#38-39 Sur	3	74,1517	16	30 litros	\$	500	15	30 días
	Arepas de		CII 23D #	4,683	-						
69	Sofy	Fontibón	104-25	0	74,1398	81	90 litros	\$	750	25	15 días
	Pinocho		CII 20 # 99-	4,674	-						
70	Carbón	Fontibón	20	8	74,1427	16	30 litros	\$	750	15	30 días
	Empanadas		Cra 97 #	4,679	-						
71	Tolimax	Fontibón	23S-174	8	74,1328	41	50 litros	\$	750	15	7 días
	El Fogón		Cra 100#24c-	4,682	-						
72	latino	Fontibón	08	3	74,1330	16	30 litros	\$	1.750	15	5 días
	Restaurante		CII. 25g	4,675	_						
	Mesa		#85c-19,	4 ,075	74,1205						
73	Gourmet	Fontibón	Bogotá		77,1200	16	30 litros	\$	750	15	30 días

	Restaurante										
	sazón y		CII. 77 #112-	4,716	_						
74	•	Engativá	33,	•	74,1236	81	90 litros	\$	2.750	25	10 días
7 -	Restaurante	Liigativa	Cra. 106	4,715	74,1200	01	30 11103	Ψ	2.700	20	10 0103
75	Sion	Engativá		•	74,1149	81	90 litros	\$	1.250	25	30 días
73	Restaurante	Lilgativa	#00/\-10	•	74,1143	01	90 III 03	Ψ	1.230	25	30 dias
	lucho			4,693							
			Cra. 73 #76-	4,093	74 0022						
76	gourmet San	Engotivá		0	74,0923	126	150 litros	Ф	2.750	25	15 díoc
76	Tijuana	Engativá	99	4 700		126	150 litros	\$	2.750	25	15 días
77	Restaurante	E	Cra. 82a	4,702	74.0075	0.4	00 114	Φ.	4.050	05	00 1/
77	la vecina	Engativá	·	2	74,0975	81	90 litros	\$	1.250	25	20 días
	Panadería		Cra. 69h	4,675	-						
78	las acacias	Engativá	#65-2	6	74,0948	81	90 litros	\$	500	25	30 días
	Panadería la		Cra. 69p	4,674	-						
79	66	Engativá	#64-99	0	74,0980	81	90 litros	\$	2.250	25	15 días
	Panadería y			4 70E							
	cafetería river		Ac 72 #103 A	4,705	74.4400						
80	pan	Engativá	- 39	8	74,1189	96	120 litros	\$	2.750	25	20 días
	Brown	Ŭ	CII. 51 #71-	4,667	_						
81	restaurante	Engativá	07	8	74,1072	41	50 litros	\$	1.750	15	7 días
			CII. 70a	4,694	-,		, , , , , , ,	Ţ			
82	Sanfermin	Engativá	#87A-96	9	74,1092	16	30 litros	\$	1.250	15	10 días
<i>32</i>	Carnonini	Liigativa	110171 00		1 1,1002	. 0	00 111100	Ψ	1.200	10	10 dido

Anexo 2. Datos programación modelo propuesto.

Fuente: Elaboración propia

ANEXO 3. MATRIZ DE DISTANCIA CLIENTES PROGRAMACIÓN

Anexo 3 Matriz de Distancia clientes a programar.