ANALISIS DE FALLA DEL SISTEMA TOMA DE FUERZA (PTO) TRACTOR KUBOTA M9540.

ING. JUAN DAVID MARTIN AVILA.
ING. GERMAN LOPEZ MILLAN.

UNIVERSIDAD ECCI.
DIRECCION DE POSTGRADOS.
BOGOTÁ D.C.
2016.
ANÁLISIS DE FALLA DEL SISTEMA TOMA DE FUERZA (PTO) TRACTOR KUBOTA M9540.

ING. JUAN DAVID MARTIN AVILA.
ING. GERMAN LOPEZ MILLAN.

Anteproyecto de Investigación.

DRA. MARIA GABRIELA MAGO RAMOS.
DIRECTORA DEL PROYECTO.

UNIVERSIDAD ECCI.
DIRECCION DE POSTGRADOS.
BOGOTÁ D.C.
2016.
<table>
<thead>
<tr>
<th>TABLA DE CONTENIDO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTA DE FIGURAS.</td>
</tr>
<tr>
<td>LISTA DE TABLAS.</td>
</tr>
<tr>
<td>LISTA DE ANEXOS.</td>
</tr>
<tr>
<td>INTRODUCCION.</td>
</tr>
<tr>
<td>RESUMEN.</td>
</tr>
<tr>
<td>ABSTRACT.</td>
</tr>
<tr>
<td>GLOSARIO.</td>
</tr>
<tr>
<td>1. ANALISIS DE FALLA DEL SISTEMA TOMA DE FUERZA (PTO) TRACTOR KUBOTA M9540.</td>
</tr>
<tr>
<td>2. PROBLEMA DE INVESTIGACION.</td>
</tr>
<tr>
<td>2.1 DESCRIPCION DEL PROBLEMA.</td>
</tr>
<tr>
<td>2.2 PROBLEMA DE INVESTIGACION.</td>
</tr>
<tr>
<td>2.3 SISTEMATIZACIÓN.</td>
</tr>
<tr>
<td>3. OBJETIVOS DE LA INVESTIGACIÓN.</td>
</tr>
<tr>
<td>3.1 OBJETIVO GENERAL.</td>
</tr>
<tr>
<td>3.2 OBJETIVOS ESPECÍFICOS.</td>
</tr>
<tr>
<td>4. JUSTIFICACIÓN Y DELIMITACIÓN DE LA INVESTIGACIÓN.</td>
</tr>
<tr>
<td>4.1 JUSTIFICACIÓN.</td>
</tr>
<tr>
<td>4.2 DELIMITACIÓN DE ESPACIO.</td>
</tr>
<tr>
<td>4.3 DELIMITACIÓN DE TIEMPO.</td>
</tr>
<tr>
<td>4.3 DELIMITACIÓN DE CONTENIDO.</td>
</tr>
<tr>
<td>5. MARCO CONCEPTUAL.</td>
</tr>
<tr>
<td>5.1 MARCO TEORICO</td>
</tr>
<tr>
<td>5.2 ESTADO DEL ARTE.</td>
</tr>
<tr>
<td>5.2.1 Local</td>
</tr>
<tr>
<td>5.2.2 Nacional</td>
</tr>
<tr>
<td>5.2.3 Internacional</td>
</tr>
<tr>
<td>5.3 MARCO LEGAL.</td>
</tr>
<tr>
<td>5.4 MARCO HISTORICO.</td>
</tr>
<tr>
<td>6. TIPO DE INVESTIGACION.</td>
</tr>
<tr>
<td>7. MARCO METODOLOGICO.</td>
</tr>
<tr>
<td>7.1 RECOLECCION DE DATOS.</td>
</tr>
<tr>
<td>7.2 ANALISIS DE DATOS.</td>
</tr>
</tbody>
</table>
LISTA DE FIGURAS.

Fig. 1. Remplazo de arado animal a arado de tractor por arrastre o tiro.

Fig. 2. Transmisión de fuerza por medio de correa a máquinas.

Fig. 3. Toma de fuerza (PTO) con cardan T sustituye a la toma de fuerza con correa.

Fig. 4. Freno de la Polea, el freno aplicado esta dibujado en puntos.

Fig. 5. Tractores-Mecánica-Reparación-mantenimiento, Tres tipos de fuerza.

Fig. 6. Sistema análogo Toma PTO John Deere.

Fig. 7. Sistema análogo Toma PTO Kubota.

Fig. 8. Tractores-Mecánica-Reparación-mantenimiento, sistema análogo Toma PTO Ford.

Fig. 9. Desarme del PTO M9540.

Fig. 10. listado de partes PTO tractor M9540.

Fig. 11. Freno tipo Abrazadera o Brida.

Fig. 12. Abrazadera de Frenado 010 del PTO M8950.

Fig. 13. Fallas registradas de marzo a septiembre de 2016.

Fig. 14. Falla registrada en sistema PTO.

Fig. 15. Arandela Rota.

Fig. 16. Arandela más gruesa y sujeción.

Fig. 17. Desarme tractor Kubota M9540.
LISTA DE TABLAS.

Tabla 1: TIPO DE INVESTIGACION.
Tabla 3: FALLA REGISTRADA EN SISTEMA PTO.
Tabla 4: ANALISIS DE IMPACTO.
Tabla 5: ROI (RETORNO DE LA INVERSION).
LISTA DE ANEXOS.

ANEXO 1. MM-ING-001.
ANEXO 2. EVALUACION DE CAPACITACION.
ANEXO 3. FORMATO DE MANTENIMIENTO POR CONTROL DE HORAS.
ANEXO 4. REPORTE DE SERVICIO.
ANEXO 5. COTIZACION MOTO MART S.A.
INTRODUCCION.

La presente investigación trata sobre el análisis de falla del sistema toma de fuerza (PTO) del tractor Kubota M9540 el cual cuando se desacopla la palanca que hace funcionar el eje toma de fuerza trasero para hacer el frenado de un implemento conectado al tractor no frena.

La característica principales del daño que se pueden generar en el tractor son ruidos anormales al momento de acoplar la toma de fuerza; difícil acoplamiento del cardan al implemento que se va a conectar al tractor; no frenan los implementos acoplados en el tractor en su parte posterior que funcionan con el pto causando daños o incidentes a operarios, animales y terceros; en el momento del cambio de aceite se encuentran limaduras y fragmentos de la arandela del freno del pto; daño eléctrico del motor de arranque por encendido y apagado constante para frenar el pto.

Para analizar este problema es necesario mencionar sus causas. Una de ellas es la falta de capacitación a los operadores de los tractores que no conocen como funciona internamente el sistema de la toma de fuerza (PTO) y trabajan sin tener conciencia del daño que pueden hacer al desacoplar dicho sistema a altas revoluciones en el motor de combustión interna.

El espesor bajo de la arandela del freno en el sistema de la toma de fuerza (PTO) la cual al momento de romperse malgasta el disco del freno del sistema evitando su parada.

La investigación de esta problemática se realizó por el interés de conocer cuál es el daño fundamental en el freno de la toma de fuerza el cual pude generar daños, incidentes, accidentes a personas, animales o terceros causando gastos enormes a clientes y a la empresa de Moto Mart S.A.
Profundizar el estudio de este problema se basa en un interés académico y profesional en el que se desea llegar a plantear posibles soluciones en las que se pueda mitigar el riesgo y ofrecer una solución económicamente viable para la empresa y de base de investigación para próximos proyectos en la universidad ECCI.

El tipo de investigación es histórico de acuerdo a datos obtenidos de varios tractores que fueron notificados al call center anteriormente, otro tipo de investigación es documental el cual se analiza la información escrita por fallas reportadas en el tractor.

Los objetivos específicos son analizar las partes mecánicas dentro del sistema donde se identificara cual es la parte que está fallando.

Evaluar diferentes sistemas del tractor y condiciones de falla revisando la forma de operación de los operarios a fin de mejorar la confiabilidad del equipo y determinar si la falla corresponde a una causa humana o mecánica.
RESUMEN.

El sistema toma de fuerza PTO que significa (Power take-Off) hace referencia al sistema de acoplamiento del tractor a cualquier instrumento diseñado para su conexión como lo son trilladoras, corta malezas, cosechadoras de forraje, segadoras, hileradores, y enfardadoras, este tipo de conexión a presentado inconvenientes en los tractores Kubota M9540 debido a que los clientes de esta referencia evidencian en el callcenter en la sede de Chía-Cundinamarca en Colombia que presentan fallas como el que no frenan los implementos acoplados en el tractor en su parte posterior que funcionan con el PTO, ruidos anormales en el momento de acoplar el embrague de toma de fuerza, en el momento de realizar el cambio de aceite se encuentran limaduras o fragmentos de la arandela del freno PTO, también evidencian un difícil acoplamiento del cardan del implemento que se va a conectar al tractor debido a que gira el eje PTO, y las posibles afectaciones a los operarios por falta de inactividad del freno del sistema PTO que hace que los implementos conectados al (PTO) no se detengan generando incidentes o daños a los operarios, animales que se encuentran cerca al tractor, o daños del terreno para la siembra, razones por las cuales se realiza una investigación sobre los posibles daños que afectan el sistema PTO y la importancia de dar solución a estas fallas para mejorar la productividad tanto del comprador de los tractores Kubota modelo M9540 como del representante de la marca a nivel nacional Moto Mart S.A. Por esta razón se opta por realizar un análisis de impacto basado en los datos adquiridos por el callcenter de Moto Mart S.A. sede Chía Cundinamarca y entregar posibles soluciones para mitigar la falla.
PTO (power take off) refers to the coupling system of the tractor to any instrument designed for connection such as threshers, weed cutters, forage, harvesters, mowers, balers and etc. This type of connection has presented problems on tractors M9540 of Kubota because customers of this reference have claimed by calling the call center at the headquarters of Chia-Cundinamarca in Colombia that the PTO has flaws such as it does not stop the implements that are coupled to the rear of the tractor that is connected to the PTO. Unusual noise at the time of engaging the clutches PTO at the time of the oil change when rotating. PTO shaft made a terrible noise and possible damages to operators, animal and harvest that are near the tractor due to the malfunction of the brake of the PTO. That is why an investigation on possible damage affected by the PTO system, to improve the productivity of Kubota’s tractors owners’ of the M9540 Kubota model and for the Representatives of the Brand in Colombia. Moto Mart SA, for this reason, we chose to perform an analysis based on the data acquired by the call center at Moto Mart SA Chia Cundinamarca headquarters to find possible solutions to resolve the problem.
GLOSARIO.

Agricultura: Trabajo de la tierra para generar alimentos vegetales.

Corta maleza: Elemento utilizado para podar pasto, malezas, a alturas de terminadas de acuerdo a la labor a realizar en el campo.

Hileradores: Elemento que se utiliza para rastrillar el pasto y dejarlo de manera organizada en hileras.

Implementos: Utensilio o instrumento agrícola que se utiliza en un tractor para la labranza.

Metodología: Serie de técnicas que se aplican sistemáticamente durante un proceso de investigación.

Operario: Persona encargada de realizar actividades operativas con un fin específico.

Optimización: Método para determinar los valores de las variables que intervienen en un sistema para así obtener un resultado de gran confiabilidad.

PTO: (Power take-Off) Toma de fuerza.

Tractor: Vehículo de trabajo agrícola diseñado con alta fuerza para desempeñar labores de labranza.

Transmisión mecánica: Es un mecanismo para transmitir potencia entre dos o más sistemas de una máquina.

Trilladora: Elemento diseñado para soltar el grano de las espiga de arroz, cebada, trigo etc.
1. ANALISIS DE FALLA DEL SISTEMA TOMA DE FUERZA (PTO) TRACTOR KUBOTA M9540.

2. PROBLEMA DE INVESTIGACION.

2.1 DESCRIPCION DEL PROBLEMA.

Los tractores Kubota son máquinas agrícolas empleadas para el trabajo de campo y labranza agrícola, dentro de este grupo de vehículos se encuentra el Kubota M9540 utilizado en la preparación previa de terrenos para cultivos, el cual consta de un tren de potencia (Motor, transmisión y diferencial) en el que centraremos nuestro estudio. La transmisión parte fundamental para este equipo cuenta con un componente adicional, un sistema de toma de fuerza (PTO), encargado de suministrar la presión hidráulica a un embrague de discos húmedos que se utiliza en el funcionamiento de los implementos rotativos que se conectan en la parte trasera de dicho tractor. Al momento que el operador desacopla o desactiva la toma de fuerza (PTO) el freno del dispositivo no funciona, causando que los implementos rotativos conectados al tractor no frenen o paren después de la jornada de trabajo o a la terminación de una labranza de preparación de un terreno agrícola, o cuando se presente una emergencia.

El problema se presenta por lo general en distintas zonas de Colombia y con implementos rotativos de fricción o contacto con el terreno de labranza como retobos, corta malezas, gradas rotativas, rastrillos hileradores, comienza dicha falla después de las 200 horas de trabajo, con otros implementos no fallan como fumigadoras, segadoras, enfardadoras, cosechadoras de forraje.
2.2 PROBLEMA DE INVESTIGACIÓN.

¿Cuáles son los problemas que se presentan en el tractor KUBOTA M9540 que causan que el freno Mecánico de la PTO no cumpla su función?

Kubota M9540 -Motor -Embrague -Transmisión -Sistema Hidráulico -Ruedas
(Prepara Terrenos) Embrague PTO → PTO → Rotativos Implementos
(Accionado hidráulicamente Transfiere Potencia y frena la PTO)

2.3 SISTEMATIZACIÓN.

¿Cuáles son las partes mecánicas dentro del sistema de transmisión o repuesto que están fallando y si son conformes con los requisitos de calidad?

¿Cómo evaluar los diferentes sistemas del tractor y sus condiciones de falla revisando la forma de operación por parte de los operadores a fin de mejorar la confiabilidad de los equipos?

¿Si se determina la causa del problema corresponde a una falla humana o mecánica?

3. OBJETIVOS DE LA INVESTIGACIÓN.

3.1 OBJETIVO GENERAL.

Analizar el factor que genera la falla de frenado de la PTO en los tractores Kubota M9540 en la empresa Moto Mart SA. Bogotá.
3.2 OBJETIVOS ESPECÍFICOS.

Analizar las partes mecánicas dentro del sistema de transmisión identificando qué tipo de sistema o repuesto está fallando y si es conforme con los requisitos de calidad.

Evaluar los diferentes sistemas del tractor y sus condiciones de falla revisando la forma de operación por parte de los operadores a fin de mejorar la confiabilidad de los equipos.

Determinar si la causa del problema corresponde a una falla humana o mecánica.

4. JUSTIFICACIÓN Y DELIMITACIÓN DE LA INVESTIGACIÓN.

4.1 JUSTIFICACIÓN.

El modelo de tractor M9540 lleva poco tiempo en el mercado Colombiano y presenta el problema de detención del PTO al momento de su desactivación causando gran preocupación a los dueños de estos tractores puesto que puede causar grandes accidentes a personas, animales o cosas que se encuentren cerca de la máquina. Es por esta razón que dar solución a dicho problema contribuye sustancialmente a la empresa y al cliente, minimizando problemas y accidentes que se puedan generar durante la operación y presencia de la falla del PTO, adicional a la presencia de esta falla es que causa una pérdida de reputación y ventas de este modelo lo cual repercute financieramente a la organización, mediante este proyecto se planteará una o varias soluciones que permitan alcanzar los objetivos y resultados esperados.

4.2 DELIMITACIÓN DE ESPACIO.

El presente proyecto se llevará a cabo en Colombia el municipio de Chía Cundinamarca en la dirección Autopista central del norte kilómetro 9, Moto Mar SA. Sede Chía.
4.3 DELIMITACIÓN DE TIEMPO.
Este proyecto tuvo inicio en el mes de marzo de 2016 con una duración de 7 meses para su planteamiento con fecha de culminación el 31 de octubre de 2016.

4.3 DELIMITACIÓN DE CONTENIDO.
La empresa Moto Mart S.A. vende, comercialización y distribuye tractores Kubota en Colombia como representante exclusivo de la marca y vende aproximadamente 150 tractores Modelo M9540 al año, el interés de analizar dicho problema es para los tractores vendidos en el año 2015 y 2016 para garantizar la venta y fortalecimiento de su comercialización en Colombia dando inicio a la investigación a los tractores reportados en la sede Moto Mart S.A. en Chía Cundinamarca.

5. MARCO CONCEPTUAL.
5.1 MARCO TEÓRICO.
Después de aparecer los tractores elementos básicos capaces de remolcar y destacados por trabajar sobre terrenos agrícolas para arar y preparar tierras por medio de arrastre o tiro con sus aperos e implementos remplazando animales para multiplicar fuerza (ver figura 1) empezó a aprovecharse su motor como fuente de energía para mover máquinas giratorias estacionarias como molinos, trilladoras, bombas para riego, entre otras, mediante una transmisión de fuerza por una polea-correa, como se muestra al lado derecho del tractor (ver Figura 2) estando detenido hasta la polea de la máquina o implemento a utilizar (ver figura 3) posteriormente al trascurso de los años se remplaza la polea lateral a la toma de fuerza en la parte trasera del tractor siendo el último de los componentes de movimiento y por medio de cardan se usa para activar el funcionamiento de los implementos con el tractor en movimiento como segadoras, rastrillos hilera dores, enfardadoras, cosechadoras, remolques forrajeros, fertilizadoras,
fumigadoras, retobos, gradas rotativas, desbrozadoras, desgranadoras, guadañadoras y demás.

GUIA-MECANIZACIÓN AGRÍCOLA

Fig. 1. Remplazo de arado animal a arado de tractor por arrastre o tiro.

Fig. 2. Transmisión de fuerza por medio de correa a máquinas.
Fig. 3. Toma de fuerza (PTO) con cardan T sustituye a la toma de fuerza con correa. Autor: Arias Paz M, (2000) Tractores 15 Edición, (p.368).

En algunos tractores que utilizaban polea al lado derecho se desacoplaban al momento de desembragar el motor, otras llevan un embrague especial que se acciona por medio de una palanca cerca de esta para poder desacoplarla rápidamente sin tener que subirse al tractor en caso de emergencia y otros tractores utilizaban las dos también por si se presentaba alguna anomalía se desacopla alguno de los dos. Los embragues son de tipo mecánico para dichas poleas.

Este sistema de polea al momento de desacoplarse o desembragar la RPM del motor deben estar lo más bajo posible para ser accionado un freno para detener completamente el giro de la polea, de esta forma frena también el implemento o máquina que se está utilizando, el freno trabaja directamente sobre la polea (ver figura 4) que después de desembragar el motor o embrague de la polea se acciona halando de R con una palanca, aplicando fuerza a Z para disminuir rápidamente el movimiento que por inercia adquirió, transmitiendo el frenado a la maquina la cual no debe tener
ningún tipo de carga debido a que no fue calculado para este trabajo, los toma de fuerza traseros también tiene un freno que más adelante miraremos con detención.

![Diagram of PTO system](image)

Fig. 4. Freno de la Polea, el freno aplicado está dibujado en puntos

El eje de la toma de fuerza (PTO) Power Take-Off es un medio eficiente para transferir poder mecánico entre los tractores y los implementos. Este sistema de transferencia de fuerza ayudó a revolucionar la agricultura en Norte América en la década de 1930. El PTO es uno de los peligros más reconocidos y persistentes asociados con las maquinarias agrícolas.

El eje del PTO del tractor (comúnmente llamado PTO) transfiere fuerza desde el tractor hacia la maquinaria o implemento que necesita de dicha energía para funcionar. La fuerza se transfiere al conectar el eje de la máquina al eje del PTO del tractor. El PTO y el eje giran a 540 rpm (9 veces/segundo) o a 1.000 rpm (16 veces/segundo) cuando están funcionando a la velocidad recomendada. En todas las velocidades, rotan en proporción a la velocidad del motor del tractor.
Dicho PTO cuenta con un freno al momento de su desactivación para evitar lesiones a terceros. Sin embargo este ha funcionado mal y ha tenido inconvenientes.

El presente proyecto de investigación tiene como fin verificar o identificar la causa por el cual el PTO de un tractor Kubota M9540 no frena luego de utilizarse después de 200 horas, nosotros nos basamos en libros de agricultura para poder analizar el daño de este problema, tesis sobre mantenimiento preventivo y correctivo de averías en tractores y por páginas en la internet.

Para entender sobre el sistema de frenado se debe entender que existen 3 tipos de PTO dependiendo la marca del tractor y diversas formas de transmisión de potencia como podemos ver en la figura 5.

A. Accionado por la transmisión.
B. Continuo.
C. Independiente.

1-Motor.
2-Embrague.
3-Caja de Cambios.
4-Ruedas.
5-PTO.
6- Embrague del PTO.

![Fig. 5. Tractores-Mecánica-Reparación-mantenimiento, Tres tipos de fuerza Autor: Guadilla Antonio, (1989) (p.337)](image-url)
A continuación apreciamos figuras de diferentes tipos de transmisiones de diferentes marcas los cuales pueden ser accionados mecánicamente o hidráulicamente como lo son John Deere, Kubota y Ford.

Fig. 6. Sistema análogo Toma PTO John Deere

Fig. 7. Sistema análogo Toma PTO Kubota.
Fig. 8. Tractores-Mecánica-Reparación-mantenimiento, sistema análogo Toma PTO Ford

TIPOS DE FRENADO DE LOS PTO

Existen 2 tipos de frenado para el PTO de abrazadera o brida y de disco incluso los primeros y algunos tractores no tienen freno en la toma de fuerza.
Este sistema trabaja con presión hidráulica accionando un conjunto de discos por medio de un pistón y al momento de desacoplarlos es frenado por un disco el cual es activado por un resorte que genera presión del lado opuesto al pistón presionando una arandela contra el disco de freno para hacer el frenado de la PTO del tractor.

Fig. 9. Desarme del PTO M9540

Fig. 10. listado de partes PTO tractor M9540

Fig. 11. Freno tipo Abrazadera o Brida.
Este sistema funciona por medio de una presión hidráulica y al momento de desacoplarla activa una abrazadera que envuelve todo el tambor del conjunto de discos para generar el frenado.

Fig. 12. 01Abrazadera de Frenado 010 del PTO M8950
5.2 ESTADO DEL ARTE.

5.2.1 Local.

1) PROYECTO DE GRADO. PROPUESTA DE MANTENIMIETNO PREVENTIVO EN LA INDUSTRIA DE PLASTICOS RUCITO LTDA. GARCIA PEDRO, SOLANO GUILLERMO. (2010).

Proporner a la gerencia un plan de mantenimiento preventivo en la industria de plásticos Rucito Ltda. Realizando un análisis del funcionamiento de la maquinaria de inyección, sus causas de falla y el mantenimiento necesario para lograr un desempeño óptimo. Objetivo general elaborar una propuesta de mantenimiento preventivo en la empresa Plásticos Rucito Ltda. Mediante un trabajo de campo aplicativo para lograr un desempeño óptimo de los recursos de la maquinaria existente.

2) MONOGRAFIA PROPUESTA DE UN PLAN DE GESTION AMBIENTAL PARA CONTROLAR PROBLEMAS DE CONTAMINACION GENERADOS POR LAS LABORES DE MANTENIMIENTO RELACIONADOS CON PINTURAS, SANDBLASTING Y FIBRAS APLICADOS A LOS TRACTO CAMIONES.

Las ventajas que se pueden obtener de la implementación de un Sistema de gestión ambiental se ven reflejadas en la reducción de costos, el incremento de la eficiencia y productividad de la empresa basada en un ambiente más limpio y agradable para los funcionarios propios de la compañía. Objetivo general propuesta de un plan de gestión
ambiental para controlar los problemas de contaminación generados por las labores de mantenimiento relacionados con pinturas sandblasting y fibras aplicados a los vehículos tracto camiones y buses.

3) DISEÑO DE UN PLAN DE MANTENIMIENTO ADECUADO PARA LOS EQUIPOS DEL CENTRO DE DIAGNOSTICOS AUTOMOTOR SERVICOCHES CDA. CASAS MARIO, MADROÑERO RUBEN. (2011).

Se propone un diseño de un plan de mantenimiento adecuado, para los equipos del centro de diagnóstico Automotor Servicoches CDA, dando inicio con la realización de una serie de procedimientos para cada uno de los activos pertenecientes al CDA. Objetivo general diseñar un plan de mantenimiento adecuado para los equipos del centro de Diagnostico Automor SERVIcoches C.D.A.

En la presente investigación se esboza una metodología clara para iniciar la implementación de una táctica que permita optimizar el retorno de la inversión destinada a unos activos base del desarrollo empresarial del mercado industrial nacional.

El proyecto titulado “Propuesta de aplicación de la metodología PMO (OPTIMIZACION DE MANTENIMIENTO PLANEADO) en el plan de mantenimiento de la empresa Trans
Masivo S.A. es un escrito que busca presentar las pautas para la aplicación de la metodología PMO en un taller de mantenimiento de buses articulados de una de las empresas operadoras del sistema Transmilenio.

5.2.2 Nacional.

Las actividades de la práctica empresarial estuvieron orientados a desarrollar la información necesaria en cuanto a costos, tiempos y requerimientos de partes y repuestos en el servicio de mantenimiento preventivo de los automóviles, camperos y camionetas de la marca Chevrolet con menos de 2 años de vida comercial en el mercado Colombiano y distribuidos por el concesionario CAMPESA S.A. En la ciudad de Bucaramanga. Objetivo general elaborar una base de datos del servicio de mantenimiento preventivo desde los cinco mil Kilómetros (5000 Km.) de recorrido hasta un límite de cien mil Kilómetros (100.000 Km.) y con intervalos de programación en el servicio cada 5000 Km. (5000 Km.) para los diferentes modelos de automóviles, camperos y camionetas de la marca Chevrolet existentes en el mercado Colombiano con menos de 2 años de vida comercial, para uso y manejo del taller de servicio post venta dispuesto a mejorar la claridad en los procedimientos, el manejo de costos y tiempo total de ejecución del programa de mantenimiento a los clientes de importante empresa.

Establecer las causas por las cuales los conductores que actualmente son empleados al servicio de la firma Frito Lay Colombia S.A. se ven afectados o involucrados en accidentes de tránsito que conllevan a la afectación de la siniestralidad en automóviles. Así como establecer procesos, procedimientos y parámetros de evaluación para la reducción de la siniestralidad y medidas a implementar con el personal de acuerdo con la gravedad del accidente.

Es un compromiso a nivel general que se involucren todos los procesos de la empresa entre los cuales no escapa el servicio de conservación y mantenimiento que debe de brindarse a las instalaciones físicas y equipos, motivo por el cual todo buen gerente de una organización conociendo los beneficios que produce implementar un adecuado programa de mantenimiento preventivo que debe apoyar y proporcionar las condiciones para ejecutarlo especialmente si se tiene en cuenta que este representa muchas ventajas como evitar fallas en la gestación dentro de las maquinas.

4) PROYECTO DISEÑO DE UN SISTEMA PARA EQUIPOS MOVILES DE UN TRANSPORTE DE CARGA TERRESTRE. SILVA CARLOS. (2007).

Proyecto diseño y procedimientos para el fortalecimiento del clima dentro del concepto de mantenimiento, se ha hecho investigaciones durante el pasado y presente siglo, que han definido distintos estilos o filosofías de mantenimiento, las cuales han facilitado y definido como debe ser la aplicación y administración de los procesos básicos como la reparación, inspección, lubricación y monitoreo de equipos y componentes.

Se desarrolló una matriz de requerimientos realizando un análisis de modo y efecto de falla (AMEF) a cada componente en la misma se respondió por cada elemento, una serie de preguntas que dan como resultado una lista de condiciones y requerimientos de actividades de mantenimiento. Posteriormente, valiéndose de dicha matriz se procedió a hacer un análisis de criticidad de los componentes dando valores cuantitativos a datos como la gravedad, frecuencia y detectabilidad de cada una de las posibles fallas identificadas.

5.2.3 Internacional.

La sociedad Ecuatoriana ha progresado paralelamente a otras sociedades dentro del campo empresarial, desde la conformación de empresas familiares hasta grandes sociedades, debido a las diversas oportunidades de mercadeo. El presente proyecto pretende determinar la factibilidad técnica, económica, administrativa y financiera de un taller mecánico de mantenimiento exprés, a vehículos livianos para el Canton San Miguel de los bancos de la provincia de Pichincha.

Autoquilnes una empresa que a pesar de tener los quipos y herramientas necesarias aún no ha podido llegar a sitioales de liderazgo. Probablemente las fallas de organización tales como la inexistencia de un procedimiento para la recepción de vehículos; falta de programas de capacitación al personal probablemente falta de publicidad adecuada han sido las causas determinantes del problema.

3) MANTENIMIENTO PREVENTIVO PARA AUTOMOVILES CHEVROLET (CHEVY MOD 02-06) CUEVAS FELICIANO, CUEVAS OSCAR. MEXICO. (2007).

Como es bien conocido el mantenimiento es una actividad que se debe realizar a todos los sistemas, llámese eléctrico, mecánico, etc., esta actividad no se lleva acabo conllevaría a que existan muchos accidentes poniendo en riesgo tanto la vida del conductor como para los peatones o terceras personas involucradas, y puede representar perdidas tanto económicas como humanas, es por esta razón, que la presente información de una serie de pasos para que se realicen en un taller mecánico automotriz, con el fin de dar un buen servicio calidad al establecimiento. Esperando que les sea útil y e tenga una buena administración de trabajo y mejoras en sus tiempos.

En la actualidad, el mantenimiento es ante todo una “estrategia” en la empresa. Esta estrategia se ha de integrar con las existentes de calidad total, seguridad, medio ambiente, etc. Pasando por el diseño, construcción, implantación y explotación de los sistemas productivos, teniendo como llegar al objetivo deseado en cualquier industria avanzada: disponer de los equipos productivos siempre que se les necesite, implantando en la empresa grupos de mejora y fiabilizacion.

El propósito de este trabajo es investigar las prácticas y los costos de mantenimiento del tractor en Nigeria con el fin de tomar decisiones de remplazo de partes y para el presupuesto general de la granja, la información se obtuvo a través de u cuestionario estructurado, los datos utilizados se obtuvieron de 60 granjas situadas en las principales granjas de cultivo de la zona sudoeste de Nigeria.

5.3 MARCO LEGAL.

A partir de año 2002 se crea el Test de Nebraska donde se encuentran laboratorios (NTTL) designados oficialmente para por los Estados Unidos de acuerdo con la Organización para los Códigos de Desarrollo Económico y códigos de la OCDE. Para la prueba de la toma de fuerza en el dinamómetro hay que dirigirse a 73,5 en acorde al requisito de la prueba de rendimiento Código 2 de la OCDE.

5.4 MARCO HISTORICO.

En la región andina o central de Colombia se á generado problemas aproximadamente en un 8% en tractores agrícolas al momento de detener la toma de fuerza (PTO) después de haber trabajado 200 horas, causando que los implementos rotativos en especial retobos, corta maleza y gradas rotativas enganchadas al tractor no se detengan al momento de su desactivación, causando problemas por accidentes.

De acuerdo a dicho problema se estudiará:

-Modo de daño dicho mecanismo con retobos.
-El 8% de Tractores han sido afectados con el problema.
-Si se utiliza bien los implementos.
6. TIPO DE INVESTIGACIÓN.

De acuerdo al desarrollo del presente proyecto se identifica el tipo de investigación en la siguiente tabla con sus respectivas características.

<table>
<thead>
<tr>
<th>TIPO DE INVESTIGACIÓN</th>
<th>CARACTERÍSTICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Histórica</td>
<td>Analiza eventos reportados en el callcenter o por correo electrónico de las inconformidades expresadas por los clientes que adquieren los tractores Kubota M9540.</td>
</tr>
<tr>
<td>• Documental</td>
<td>Analiza la información escrita o en medio digital sobre las fallas reportadas del modelo de tractor M9540 centralizando la falla del PTO.</td>
</tr>
<tr>
<td>• Descriptiva</td>
<td>El estudio se basara en los reportes de falla del PTO a nivel nacional-Colombia que sean reportados por el callcenter y o E-mail.</td>
</tr>
<tr>
<td>• Correlacional</td>
<td>El grado de relación entre variables de la población estudiada es todos aquellos tractores con más de 200 horas que sean utilizados para realizar labores de alto esfuerzo con el sistema de fuerza PTO.</td>
</tr>
<tr>
<td>• Explicativa</td>
<td>Se reúne información encontrando una de las posibles causas de daño del sistema de fuerza PTO basado en la calidad del material.</td>
</tr>
<tr>
<td>• Estudios de caso</td>
<td>Analiza las piezas que presentan daño sobre las 200 horas de trabajo de los tractores comercializados en el lapso de tiempo del año 2015 al 2016.</td>
</tr>
<tr>
<td>• Seccional</td>
<td>Recoge información mediante el reporte de daño de los equipos directamente a la empresa en tiempo de garantía y post garantía de una muestra de población que especifique falla en el sistema de fuerza PTO.</td>
</tr>
<tr>
<td>• Longitudinal</td>
<td>Compara datos obtenidos entre las fallas presentadas del sistema de fuerza PTO estableciendo posibles daños por debilidad de materiales o mala manipulación de los operarios.</td>
</tr>
</tbody>
</table>
Experimental

Analiza el efecto producido por el cambio de partes que mejoren el rendimiento y alarguen el tiempo a falla del sistema de fuerza PTO.

Fuente. Universidad Escuela Colombiana De Carreras Industriales.

7. MARCO METODOLOGICO.

7.1 RECOLECCION DE DATOS.

Los datos que se tomaran para el desarrollo de la investigación serán basados en los registros de reportes de servicio realizados después de las averías reportadas por los usuarios en el callcenter de Moto Mart S.A sede Chía Cundinamarca, evidenciando cual es una de las fallas más frecuentes y centralizándose en el análisis de los registros que afecten al sistema (PTO) de manera directa.

<table>
<thead>
<tr>
<th>FALLAS REGISTRADAS DE MARZO - SEPTIEMBRE DE 2016.</th>
<th>CANTIDAD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daño en caja de cambio.</td>
<td>8</td>
</tr>
</tbody>
</table>
Fractura en el candelero derecho (Soporte rueda trasera).
Fuga de aceite constante en el reductor de velocidad delantero.
Funcionamiento continuo de los implementos conectados al PTO.
Baja potencia en motor.

<table>
<thead>
<tr>
<th>FALLA REGISTRADA EN SISTEMA PTO.</th>
<th>CANTIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>No frenan los implementos acoplados en el tractor en su parte posterior que funcionan con el PTO.</td>
<td>12</td>
</tr>
<tr>
<td>Ruido anormal en el momento de acoplar el embrague de toma de fuerza.</td>
<td>2</td>
</tr>
<tr>
<td>En el momento de cambio de aceite se encuentran limaduras, fragmentos de la arandela del freno PTO.</td>
<td>4</td>
</tr>
<tr>
<td>Difícil acoplamiento del cardan del implemento que se va a conectar al tractor debido a que gira el eje PTO.</td>
<td>6</td>
</tr>
<tr>
<td>Daño del motor de arranque eléctrico por encendido y apagado constante para frenar el PTO.</td>
<td>9</td>
</tr>
</tbody>
</table>

Fuente: Autores del proyecto.

7.2 ANALISIS DE DATOS.
De acuerdo a la información obtenida de las tablas 2 y 3 se realiza un diagrama de barras para una mejor visualización de la diferencia entre los resultados.
Se puede evidenciar que la falla más reportada por los usuarios es el **funcionamiento continuo de los implementos conectados al PTO** ya que durante el tiempo de Marzo a Septiembre de 2016 se reportaron 33 servicios por...
este daño, razón por la cual iniciaremos a evaluar las posibles averías que producen que el cliente llame frecuentemente por daños en su tractor Kubota M9540.

- Las fallas más comunes presentadas en el PTO son las siguientes:
 - No frenan los implementos acoplados en el tractor en su parte posterior que funcionan con el PTO.
 - Ruido anormal en el momento de acoplar el embrague de toma de fuerza.
 - En el momento de cambio de aceite se encuentran limaduras, fragmentos de la arandela del freno PTO.
 - Difícil acoplamiento del cardán del implemento que se va a conectar al tractor debido a que gira el eje PTO.
 - Daño del motor de arranque eléctrico por encendido y apagado constante para frenar el PTO.

Basados en los cinco tipos de falla reportados habitualmente por los clientes y de acuerdo a los datos tomados por el callcenter se puede evidenciar en el Gráfico 2: FALLA EN EL SISTEMA PTO que la falla más significativa es No frenan los implementos acoplados en el tractor en su parte posterior que funcionan con el PTO.
Al determinar la falla más recurrente optamos por realizar un análisis de impacto para identificar cual es la falla que genera más afectación tanto al cliente como a la empresa Moto Mart S.A. Ya que los daños reportados pueden ser frecuentes pero no generar tiempos de parada del equipo, afectaciones ambientales, daños a operarios, seguridad o económicos.

La matriz de impacto se elabora tomando como referencia las cinco fallas del PTO y se evalúan con una valor de 0 cuando no aplica o de 1 cuando si influye en los 4 aspectos de criticidad.
Tabla 4. ANALISIS DE IMPACTO.

<table>
<thead>
<tr>
<th>ANALISIS DE IMPACTO</th>
<th>AMBIENT AL</th>
<th>PERDIDA PRODUCCION</th>
<th>ECONOMICA</th>
<th>SEGURIDAD</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruido anormal en el momento de acoplar el embrague de</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>toma de fuerza.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difícil acoplamiento del cardan del implemento que se</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>va a conectar al tractor debido a que gira el eje PTO.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daño eléctrico del motor de arranque por encendido y</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>apagado constante para frenar el PTO.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el momento de cambio de aceite se encuentran</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>limaduras, fragmentos de la arandela del freno PTO.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No frenan los implementos acoplados en el tractor en su</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>parte posterior que funcionan con el PTO, causando</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>daños o incidentes a operarios, animales y terrenos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores del proyecto.

7.3 PROPUESTA DE SOLUCION.

Mediante el análisis de impacto podemos determinar que la falla más recurrente no es la falla más crítica, razón por la que se ha decidido centralizar la investigación en la falla de posible afectación de los operarios y o animales por falta de inactividad del freno del sistema PTO, al realizar el análisis de los reportes con la falla mencionada se identifica que el daño es por la ruptura del plato del freno como se puede ver en la Fig. 13, creando un costo a Moto Mart S.A. por la cobertura de garantía que le entrega a sus clientes en el momento de la venta.
Se sugieren los siguientes planes de mejora para mitigar el riesgo y posibles daños.

- Verificar el modo de operación de los tractoristas que trabajan los tractores con retobos, corta malezas y desbrozadoras mediante encuestas vía e-mail o telefónicas basado en los datos obtenidos por fallas reportadas del 2015 al 2016, en la encuestas se solicitará con un lapso de cada 4 meses de acuerdo al programa de mantenimiento (Anexo 1 MM-ING-01) y se harán preguntas sobre las 5 principales fallas relacionadas en la (Tabla 3) con el fin de identificar si la falla persiste y anticiparse a realizar un arreglo sin afectar con la parada del equipo.

- Indagar si los lugares donde más presente fallas el sistema de fuerza PTO son por el tipo de suelo, se tomará información en el que los técnicos se dirijan hasta el lugar donde se encuentre el tractor y o en el momento de realizar la encuesta telefónica.

- Desarme de las máquinas que sean enviadas al taller de servicio técnico de Moto Mart SA. y las fallas que se puedan evidenciar en desplazamiento de los técnicos a los diferentes lugares para detectar las posibles fallas del sistema de fuerza PTO identificando cual de las 5 fallas de la (Tabla 3) puede ser reportada por el
dueño del equipo, capacitando a los técnicos con la nueva modificación a realizar y usando el formato ANEXO 4.

- Tomar muestras de aceite para enviarlas al laboratorio para determinar si existen altos niveles de limadura y determinar si hay extremo desgaste de piezas.

- Realizar pruebas de dureza a los elementos rotos o que generen alto nivel de limaduras y así generar posibles soluciones de fortalecimiento de materiales o el cambio de material en determinadas partes o piezas.

- Capacitar a los operadores para que en el momento que se haga el frenado del PTO se verifique que las revoluciones del tractor son las mínimas necesarias (Ralentí) para impedir el daño de las partes (Anexo 2 Evaluación de capacitación) adjunto a esto se hará entrega de una certificación de la capacitación.

- Comprobar que las piezas que se han fracturado o que presentan desgaste elevado ver Figura (13) pueden ser remplazadas por una pieza en un material más fuerte y reforzado ver figura (14) (prototipo de pieza para ensayo en equipo) y así poner en funcionamiento el sistema de fuerza PTO en el tractor y realizar pruebas.

Fig. 16. Arandela más gruesa y sujeción. Fuente: Autores del documento, (2016).
• Para el seguimiento del mantenimiento preventivo se sugiere implementar el formato (ANEXO 3) para así tener una trazabilidad de las actividades realizadas en el equipo y poder identificar posibles fallas futuras y la continuidad de la falla a superar del PTO.
8. FUENTES PARA LA OBTENCION DE INFORMACION

8.1 FUENTE PRIMARIA
La empresa de Moto Mart S.A. cuenta con recursos financieros, físicos y humanos idóneos para hacer dicha investigación del problema para poder llegar a un análisis correcto y poder dar una solución objetiva evitando la perdida de venta de mercado de la línea M9540 a nivel nacional.

Fig. 17. Desarme tractor Kubota M9540.

8.2 FUENTE SECUNDARIA
Las Empresas, Agricultores, Ganaderos, operadores que compran tractores Kubota M9540 son las directas en informar el daño a Moto Mart S.A. al momento de realizarse el daño, lo hacen vía telefónica al asesor que les vendió la máquina o al departamento de servicio por medio de la línea 6 76 13 14 en Chía Cundinamarca.
9. ANALISIS FINANCIERO DAÑO PTO M9540

Este análisis financiero se realiza basado en la cotización 003135 ANEXO 5 de repuestos de la empresa Moto Mart S.A.

Tabla 5: ROI (RETORNO DE LA INVERSION)

<table>
<thead>
<tr>
<th>TECNICO</th>
<th>Básico Mensual</th>
<th>Prestaciones</th>
<th>Salario Total</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfredo Rodríguez</td>
<td>$1.300.000</td>
<td>54%</td>
<td>$2.002.000</td>
<td>$2.002.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$702.000</td>
<td></td>
</tr>
<tr>
<td>Valor hora trabajo</td>
<td>$2.002.000</td>
<td>240</td>
<td></td>
<td>$8.342</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUXILIAR TECNICO</th>
<th>Básico Mensual</th>
<th>Prestaciones</th>
<th>Salario Total</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sebastián Ramírez</td>
<td>$700.000</td>
<td>54%</td>
<td>$1.078.000</td>
<td>$1.078.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$378.000</td>
<td></td>
</tr>
<tr>
<td>Valor hora trabajo</td>
<td>$1.078.000</td>
<td>240</td>
<td></td>
<td>$4.492</td>
</tr>
</tbody>
</table>

| HORAS DE REPARACION PTO ENTRE 2 PERSONAS | $24 |

<table>
<thead>
<tr>
<th>COSTO MANO DE OBRA REPARACION</th>
<th>$ HORATECN</th>
<th>$ HORA AUX.</th>
<th>HORAS REPA.</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$8.342</td>
<td>$4.492</td>
<td>24</td>
<td>$308.016</td>
</tr>
</tbody>
</table>

| TRANSPORTE TRACTOR IDA Y REGRESO A MOTO MART S.A. | $800.000 |

<table>
<thead>
<tr>
<th>VALOR REPUESTOS UTILIZADOS PARA REPARACION PTO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>REPUESTOS</td>
<td>PRECIO</td>
</tr>
<tr>
<td>PLATO</td>
<td>$83.428</td>
</tr>
<tr>
<td>DISCO FRENOS</td>
<td>$77.689</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>$161.117</td>
</tr>
<tr>
<td>TOTAL COSTO MANO DE OBRA</td>
<td>$308.016</td>
</tr>
<tr>
<td>TOTAL TRANSPORTES</td>
<td>$800.000</td>
</tr>
<tr>
<td>TOTAL REPUESTOS UTILIZADOS PARA REPARACION</td>
<td>$186.896</td>
</tr>
<tr>
<td>COSTO TOTAL DE REPARACION</td>
<td>$1.294.912</td>
</tr>
</tbody>
</table>

COSTO TIEMPO PARADA TRACTOR CLIENTE

OPERACIÓN DEL TRACTOR 6 DIAS A LA SEMANA POR 8 HORAS 48 HORAS SEMANALES

<table>
<thead>
<tr>
<th>48 HORAS SEMANA</th>
<th>POR 4 SEMANAS</th>
<th>192 HORAS MENSUALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALOR SALARIO OPERARIO MENSUAL</td>
<td>$864.000</td>
<td>/192</td>
</tr>
</tbody>
</table>

CONSUMO COMBUSTIBLE M9540 POR HORA 1,7 gal
PRECIO PROMEDIO COMBUSTIBLE BOGOTA $7.300
VALOR CONSUMO COMBUSTIBLE POR HORA $12.410

COSTO MANTENIMIENTO CADA 200 HORAS ó MES REPTOS $1.742.560 M/O $222.000 + IVA 16% $2.000.000 CON IVA

<table>
<thead>
<tr>
<th>DESGASTE LLANTAS TRACTOR</th>
<th>VALOR LLANTAS</th>
<th>$6.580.000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ANUAL 12 MESES</td>
<td></td>
</tr>
<tr>
<td>PROMEDIO DE USO LLANTAS</td>
<td>$548.333</td>
<td></td>
</tr>
<tr>
<td>COSTO TOTAL MANTENIMIENTO MENSUAL</td>
<td>$2.548.333</td>
<td></td>
</tr>
<tr>
<td>COSTO HORA MANTENIMIENTO MENSUAL</td>
<td>$2.548.333/192=$13.272</td>
<td></td>
</tr>
<tr>
<td>Descripción</td>
<td>Costo</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>SALARIO OPERADOR HORA</td>
<td>$4.500</td>
<td></td>
</tr>
<tr>
<td>COMBUSTIBLE HORA</td>
<td>$12.410</td>
<td></td>
</tr>
<tr>
<td>COSTO HORA MANTENIMIENTO MENSUAL</td>
<td>$13.272</td>
<td></td>
</tr>
<tr>
<td>COSTO HORA DE TRABAJO TRACTOR</td>
<td>$30.182</td>
<td></td>
</tr>
<tr>
<td>VALOR HORA TRABAJO TRACTOR CON 35% GANANCIA</td>
<td>$30.182/0.65= $46.434</td>
<td></td>
</tr>
<tr>
<td>GANANCIA POR HORA</td>
<td>$30.182= $16.252</td>
<td></td>
</tr>
<tr>
<td>PERDIDA POR DIA AL TENER EL TRACTOR DETENIDO</td>
<td>$16.252 X 8 HORAS $130.016</td>
<td></td>
</tr>
<tr>
<td>COSTO TIEMPO DE PARADA POR REPARACION PTO ES DE 4 DIAS</td>
<td>$130.016 X 4 = $520.064</td>
<td></td>
</tr>
</tbody>
</table>

POSIBLE SOLUCION Y ROI

COSTO INSTALACION ARANDELA REFORZADA PTO EN COLOMBIA

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTO PIEZA REFORZADA</td>
<td>$300.000</td>
</tr>
<tr>
<td>COSTO INSTALACION DE LA PIEZA REFORZADA</td>
<td>$308.016</td>
</tr>
<tr>
<td>COSTO PROMEDIO TRANSPT. TRAIDA Y LLEVADA TRACOR MOTO MART</td>
<td>$800.000</td>
</tr>
<tr>
<td>GASTO TOTAL INSTALACION EN COLOMBIA CON REFUERZO</td>
<td>$1.408.016</td>
</tr>
</tbody>
</table>
COSTO INSTALACION ARANDELA REFORZADA PTO EN JAPON

<table>
<thead>
<tr>
<th>COSTO PIEZA REFORZADA</th>
<th>$300.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTO INSTALACION DE LA PIEZA REFORZADA</td>
<td>$0</td>
</tr>
<tr>
<td>COSTO PROMEDIO TRANSPT. TRAIDA Y LLEVADA TRACOR MOTO MART</td>
<td>$0</td>
</tr>
<tr>
<td>COSTO INSTALACION ARANDELA REFORZADA EN JAPON</td>
<td>$300.000</td>
</tr>
<tr>
<td>GASTO TOTAL INSTALACION EN COLOMBIA CON REFUERSO</td>
<td>$1.408.016</td>
</tr>
<tr>
<td>COSTO INSTALACION ARANDELA REFORZADA EN JAPON MENOS</td>
<td>$300.000</td>
</tr>
<tr>
<td>AHORRO GASTOS REMPLAPLAZO ARANDELA DESDE JAPON X TRACTOR</td>
<td>$1.108.016</td>
</tr>
<tr>
<td>PROMEDIO FALLAS TRACTORES SEMESTRAL</td>
<td>CANTIDAD 33</td>
</tr>
<tr>
<td>TOTAL AHORRO SEMESTRAL DEL ARREGLO 33 PTO X $1.108.016</td>
<td>$36.564.528</td>
</tr>
<tr>
<td>COSTO ARREGLO DE 33 TRACTORES POR 6 MESES A $1.408.016</td>
<td>$46.464.528</td>
</tr>
<tr>
<td>COSTO ARREGLO 33 TRACTORES POR 6 MESES DESDE JAPON A $300.000</td>
<td>$9.900.000</td>
</tr>
</tbody>
</table>

ROI

ROI=(UTILIDAD NETA O GANANCIA/INVERSION) X 100

| INSTALACION ARANDELA EN COLOMBIA CON REFUERZO (UTILIDAD) | $1.408.016 |
| INSTALACION ARANDELA REFORZADA EN JAPON (INVERSION) | $300.000 |

($1.408.016/$300.000) X 469,3386667 %
EL AHORRO QUE SE LE GENERARA A MOTO MART S.A EN SEIS MESES ARREGLANDO 33 PTO
CON ARANDELA MAS GRUESA DESDE EL JAPON UTILIZANDO EL ROI ES DEL 469,33 %

Fuente: Autores del proyecto.

10. TALENTO HUMANO.

El trabajo realizado tendrá gran implementación con el fin de capacitar, evaluar y certificar por medio de Moto Mart S.A distribuidor exclusivo de Kubota Japón para Colombia a los tractoristas u operadores de tractores, dueños, inspectores, administradores que desempeñen labranzas agrícolas y ganaderas para que operen con seguridad un tractor para que así puedan ser responsables con la sociedad que se encuentra al lado de las máquinas para evitar incidentes y accidentes sobre todo al momento de enganchar, activar y detener la toma de fuerza (PTO) y demás componentes del tractor, esto debido a que la innovación y modernización de los tractores las personas de estas labores van atrasándose en nuevos conocimientos de las nuevas máquinas que llegan al mercado en Colombia.

Esta capacitación se hace para que las personas no queden sin el conocimiento para operar los tractores y ya que en algunas oportunidades los tractoristas son personal analfabetas la capacitación debe ser más extensa o en el peor de los casos requerir al comprador del tractor contratar personal idóneo para este tema y que así tengan las condiciones necesarias con aptitudes y habilidades en la operación de nuevas máquinas como el tractor Kubota M9540 que llega al mercado con nueva tecnología y no tengan que generar grandes esfuerzos físicos y mentales al momento de hacer una operación de dichas máquinas evitando riesgos potenciales que puedan desencadenar algunas perturbaciones en la salud o integridad física.
La evaluación que se les generará después de la capacitación es para estar seguros que realmente queda claro la capacitación y seguridad del funcionamiento de un tractor y sobre todo el sistema de la toma de fuerza (PTO).

El certificado que se les otorga después de la capacitación y la evaluación es para motivar a las personas a que cumplan con los requerimientos necesarios para un correcto trabajo en cualquier región del país o del planeta.

De igual manera todo esto ayudara a que el tractor funcione correctamente en especial la toma de fuerza (PTO) para no generar mantenimientos correctivos donde los tiempos de parada son demasiado extensos y así poder tener una confiabilidad en el equipo de talento humano y el tractor.

Al no generar esta falla constantemente se evitara incurrir en gastos adicionales de repuestos mano de obra transportes y la no continuidad de la operación, haciendo que las partes involucradas Moto Mart S.A y sus clientes no pierdan dinero adicional cubriendo las garantías y/o fallas del equipo.

11. CONCLUSIONES

11.1 Conclusiones.

Al analizar las partes mecánicas dentro de la transmisión se identifica que el sistema no se encuentra fallando, en el sistema de toma de fuerza (PTO) por la inadecuada manipulación del operario genera fisuras o rupturas en la arandela del freno del sistema PTO a altas revoluciones en el momento del frenado, cuando se realiza repetidamente el giro del tractor en los linderos del terreno se genera el deterioro del material causando su fractura, para prevenir esta falla es necesario que el operario levante el
implemento que esté conectado al equipo (si aplica) y realice el giro antes de bajarlo nuevamente, para mitigar la falla de ruptura es necesario realizar el cambio de la arandela en acero de 2,5mm por una arandela de 4mm la cual no se fractura tan fácilmente permitiendo que el tractor Kubota M9540 pueda continuar con sus labores sin afectar el sistema PTO aunque el operario utilice el sistema de frenado altas revoluciones.

En el momento de evaluar los diferentes sistemas del tractor y revisando la forma de operación por parte de los operadores a fin de mejorar la confiabilidad de los equipos, es necesario dar capacitaciones continuas al personal operativo de los tractores y hacer un acuerdo en el momento de la venta del tractor que solo este será manipulado por personal competente y con las capacidades suficientes para no generar daño a las máquinas en el momento de realizar el frenado de la toma de fuerza ya que en la mayoría de los casos el daño se ha generado por el frenado inoportuno a grandes revoluciones del motor generando la ruptura de la arandela del freno del sistema PTO.

Se determina que la causa del problema corresponde a una falla humana en la mayoría de los casos y la cual se puede mitigar al realizar el cambio de la arandela del freno del sistema PTO, aun así es necesario realizar las capacitaciones continuas al personal operativo y concientizar a las personas para que usen el equipo de acuerdo a las especificaciones del fabricante.

11.2 Recomendaciones.

Se recomienda capacitar a los operadores para evitar daños operativos en la máquina teniendo en cuenta lo siguiente.

Cuando se dispone a trabajar con un implemento que utilice cardan y al momento de embragar/conectar la toma de fuerza del tractor, el motor del tractor debe estar funcionando a revoluciones muy bajas (ralentí y/o mínima del motor). Una vez embragada la toma de fuerza ir incrementando paulatinamente las revoluciones hasta
alcanzar las (540 RPM) o las óptimas de trabajo. Comenzar a cortar sin desconectar/desembragar la toma de fuerza durante el trabajo o la labranza. Utilizar siempre durante el trabajo el acelerador de mano y NO el del pie. Cuando se utiliza el acelerador de pie durante el trabajo tenemos constantemente el mismo efecto que cuando permanentemente acoplamos y desacoplamos la Toma De Fuerza con revoluciones altas, dañando mecanismos internos en la TDF o en el implemento. Cuando llegan a la cabecera de corte, solamente levantar el implemento para dar la vuelta y entrar a cortar la siguiente hilera/línea. Cuando por algún motivo (emergencia, rotura, accidente etc.) deben desconectar la TDF de inmediato, bajar primero las revoluciones (RPM) del motor lentamente (No de golpe) luego sí desconectar la toma de fuerza.

Al termino del trabajo o para descansar o simplemente mantenimiento, ir bajando las revoluciones paulatinamente, hasta llegar a ralentí (mínima del motor) y luego desacoplar/ desconectar suavemente la toma de fuerza para evitar daños internos en el PTO, en lo posible si el implemento rosa el terreno ayudaría bastante al cuidado del freno de la toma de fuerza.

Recomendamos hacer una prueba de dureza a la arandela del freno del PTO.

Comprobar que la arandela que se han fracturado sea remplazada por una pieza en un material más fuerte, de mayor calibre y sujetar al pistón ver figura (14) (prototipo de pieza para ensayo en equipo) y así poner en funcionamiento el sistema de fuerza PTO en el tractor y realizar pruebas.

Hacer un seguimiento del mantenimiento preventivo se sugiere implementar el formato (ANEXO 3) para así tener una trazabilidad de las actividades realizadas en el equipo y poder identificar posibles fallas futuras y la continuidad de la falla a superar del PTO.

Utilizar un dispositivo Over Runing Clutch diseñado y utilizado en Estados Unidos de América, el cual hace la misma función del piñón rueda libre en una bicicleta.
12. ANEXOS

11.1 ANEXO 1, MM-ING-01
<table>
<thead>
<tr>
<th>EVALUACION PROGRAMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERACIÓN Y MANTENIMIENTO</td>
</tr>
</tbody>
</table>

**Nombre_______________________ Cedula__________________
Cargo_________________

Marque con una X la respuesta correcta

1 **Cada cuanto se debe ajustar las tuercas de las ruedas del tractor (ruedas y platos)**
 a: Cada mes
 b: Cada año
 c: Cada 8 días
 d: Cada 8 horas

2 **Las llantas delanteras se deben lastrar:**
 a: Llenas de agua
 b: 75% de agua y 25% de aire
 c: 50% de agua y 50% de aire
 d: Solo aire

3 **cuando el toma fuerza del tractor (PTO) va con un implemento, que se debe hacer al momento de detenerlo para no dañar el PTO:**
 a: Cuando el motor del tractor esta a 2000 RPM desacoplar el PTO
 b: Cuando el motor del tractor esta a 2000 RPM desacelerar al mínimo, dejar rozar el implemento y luego desacoplar el implemento lentamente
 c: Acelerar el tractor al máximo para que el implemento ande muy rápido y desacoplar el PTO
 d: Ninguna de las anteriores

4 **Al activar la traba diferencial se puede girar el tractor hacia la derecha o hacia la izquierda:**
 a: Si
 b: No
 c: Algunas veces
 d: Siempre

5 **Qué especificaciones debe tener un aceite para motor diesel KUBOTA**
 a: 20W50 SL
 b: 80W90
 c: W40 Cb
 d: 15W40 CH1
 e: 10W30 CH

6 **Para qué sirve el sistema de sensibilidad en el tractor o en el control de tiro:**
 a: Para que el tractor tenga tracción en las 4 ruedas
 b: Para que haya mas tracción y no se pueda dar dirección
 c: Para darle mas torque al motor
 d: Para que los brazos del hidráulico suban cuando el implemento utilizado se encuentra con un obstáculo que pueda dañar alguna parte del tractor o del implemento
e: Para que los brazos del hidráulico se sostengan presionados cuando el implemento utilizado se encuentra con un obstáculo

7 Cuando se cambia el aceite hidráulico se debe tener en cuenta:
 a: No botar los imanes de los filtros
 b: Reemplazar los 2 filtros
 c: Extraer todo el aceite del sistema
 d: Ajustar bien los tapones para colocar el aceite nuevo
 e: Todas las anteriores

8 Cada cuantas horas se debe cambiar el aceite del motor:
 a: Cada 50 horas
 b: Cada 100 horas
 c: Cada 200 horas
 d: Cada 500 horas

9 Cada cuantas horas se debe cambiar el aceite del hidráulico y el de la transmisión delantera:
 a: Cada 100 horas
 b: Cada 600 horas
 c: Cada 1200 horas
 d: Cada 1000 horas

10 Cuando se maneja el tractor se debe tener el pedal del embrague:
 a: Completamente suelto
 b: Medio pisado
 c: Con el pie sobre el pedal
 d: Completamente pisado

11 Funcion del refrigerante
 a: Elevar punto de ebullición
 b: Bajar el punto de ebullición
 c: Ser multigrado
 d: Todas las anteriores

12 Que elementos se consideran para un buen desempeño de operación
 a: Correcta relación tractor-implemento
 b: Estado óptimo de humedad del suelo
 c: Tiempo disponible para la labor
 d: Topografía
 e: Condiciones físicas del suelo
 f: Todas las anteriores

13 Se recomienda tanquear
 a: Después de las labores en la tarde
 b: Todas las mañanas
 c: A media noche
 d: ninguna de las anteriores
11.3 ANEXO 3 FORMATO DE MANTENIMIENTO PREVENTIVO POR CONTROL DE HORAS

Objeto	Indicación en el Horómetro	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	900	1000	1200	en adelante
----------------------------	----------------------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	
1 Aceite del motor	Cambiar																				cada 200 hrs
2 Filtro aceite motor	Sustituir	X	X	X																	
3 Filtro de combustible	Sustituir																				
4 Separador de agua	Limpiar																				
5 Sistema de encendido	Verificar	X	X																		
6 Tornillos de las	Verificar	X																			
7 Ruedas	Verificar																				
8 Condición de la batería	Verificar																				
9 Correa del ventilador	Ajustar	X																			
10 Embague	Ajustar	X																			
11 Frenos (purgar)	Ajustar																				
12 Filtros de aire	Ajustar	X																			
13 Filtros de aire	Sustituir	X																			
14 Filtros de aire	Sustituir																				
15 Filtros de aire	Sustituir																				
16 Abrazaderas del	Verificar																				
17 Tubería de combustible	Verificar																				
18 Convergencia	Ajustar	X																			
19 Filtros de aceite	Sustituir																				
20 Filtros de aceite	Sustituir																				
21 Revisión del PTO	Inspección																				
22 Protector del eje	Ajustar	X																			
23 Sistema de refrigeración	Verificar																				
24 Oil transfer	Cambiar	X																			
25 Refrigerante	Cambiar																				

capacidad de aceite motor 11.3 qts igual a 2.8 gals 15W40 SHELL o CHEVRON

capacidad aceite hidráulico 63.4 qts igual a 15.9 gals THIDRA O DONAX TD

capacidad aceite transmisión delantera 18 qts igual a 4.5 gals SPIRAX 80W90
Orden de Servicio

Número de Orden: 26119
Fecha:
Nombre del Cliente:
Dirección:
Teléfono:
Ciudad:
Máquina/Modelo:
Motor:
Serie No.:
Cotización No.:
Lectura Horómetro:
Ubicación:

<table>
<thead>
<tr>
<th>DESCRIPCIÓN DEL TRABAJO</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valor Repuestos según Cotización

Total de la Cotización

<table>
<thead>
<tr>
<th>Forma de Pago Contado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Técnico Asignado:</td>
</tr>
<tr>
<td>Fecha de Inicio:</td>
</tr>
<tr>
<td>Entrega:</td>
</tr>
</tbody>
</table>

Autorizo tanto el trabajo, como las cotizaciones anexas de repuestos y me comprometo a cancelar el valor total final definitivo, previamente al recibo de la máquina o elementos objeto de esta Orden de Servicio. Igualmente acepto que transcurridos diez (10) días calendario posteriores al recibo o notificación de culminación de esta orden de servicio y la Máquina o elementos no fuesen retirados, reconoceré la suma de (5% de los gastos) a MOTOMART S.A., por concepto de bodegaje. La mora en el pago ocasional de intereses del 4% mensual.

Igualmente autorizo a MotoMart S.A. a quien represente sus derechos u obligaciones en el futuro a la calidad de acreditar a reportar, procesar, solicitar y divulgar a la Central de Información Financiera CIFIN Asociación Bancaria de Entidades Financieras de Colombia, o cualquier otra Entidad que maneje o administre bases de datos con los mismos fines, toda la información referente a mi comportamiento comercial.

Los impuestos presentados durante la reparación serán consultados para su aprobación telefónicamente y se liquidarán a la terminación del trabajo.

Firma Cliente:
C.C. o NIT:

Nota: Incluímos inventario de Recibo de la Maquinaria y las Cotizaciones a que haya lugar.

Departamento Técnico

www.motomart.com.co

Direcciones

- **Bogotá D.C.:**
 Clavería:
 Barquisimeto:
 Cúcuta:
 Santa Marta:
 Cali:
 San Juan de Pasto:
 Medellín:
 Ibagué:
 Barranquilla:

<table>
<thead>
<tr>
<th>Teléfono</th>
<th>Correo electrónico</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

57
Señores: GRUPO AGROIND HDA LA GLORIA SA
NIT: 900270083
Dirección: CLL 26 N 59 15 PISO 9
Teléfono: 7445454

COTIZACION DE VENTA #: 003135
Fecha Emisión: 28/10/2016
Fecha Venta: 07/11/2016

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Cant.</th>
<th>V.Unit.</th>
<th>Desc.</th>
<th>Val Bruto</th>
<th>% IVA</th>
<th>Val IVA</th>
<th>Val Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP007U16</td>
<td>ACEITE KUBOTA 15W40 SX1 POWER</td>
<td>1</td>
<td>229.600</td>
<td>0</td>
<td>229.600</td>
<td>0.16</td>
<td>36.737</td>
<td>266.335</td>
</tr>
<tr>
<td>S9700-26112</td>
<td>FILTRO DE AIRE EXTERNO</td>
<td>1</td>
<td>32.000</td>
<td>0</td>
<td>32.000</td>
<td>0.16</td>
<td>5.120</td>
<td>37.120</td>
</tr>
<tr>
<td>55231-26150</td>
<td>FILTRO DE AIRE INTERNO</td>
<td>1</td>
<td>31.916</td>
<td>0</td>
<td>31.916</td>
<td>0.16</td>
<td>5.107</td>
<td>37.023</td>
</tr>
<tr>
<td>HCC-1</td>
<td>FILTRO DE ACEITE</td>
<td>1</td>
<td>12.100</td>
<td>0</td>
<td>12.100</td>
<td>0.16</td>
<td>1.937</td>
<td>14.037</td>
</tr>
<tr>
<td>HCC-8C</td>
<td>FILTRO DE COMBUSTIBLE 9000</td>
<td>1</td>
<td>12.853</td>
<td>0</td>
<td>12.853</td>
<td>0.16</td>
<td>2.056</td>
<td>14.909</td>
</tr>
<tr>
<td>M1521-43390</td>
<td>FILTRO</td>
<td>1</td>
<td>178.525</td>
<td>21.424</td>
<td>157.111</td>
<td>0.16</td>
<td>25.138</td>
<td>182.249</td>
</tr>
<tr>
<td>HCC-18A</td>
<td>FILTRO COMBUSTIBLE</td>
<td>1</td>
<td>27.600</td>
<td>0</td>
<td>27.600</td>
<td>0.16</td>
<td>4.416</td>
<td>32.016</td>
</tr>
<tr>
<td>RP007T16</td>
<td>ACEITE KUBOTA HYDRAULICO SX1</td>
<td>3</td>
<td>210.521</td>
<td>0</td>
<td>631.563</td>
<td>0.16</td>
<td>101.050</td>
<td>732.613</td>
</tr>
<tr>
<td>HH330-2630</td>
<td>FILTRO HIDRAULICO SERIE M</td>
<td>2</td>
<td>85.345</td>
<td>0</td>
<td>170.690</td>
<td>0.16</td>
<td>27.310</td>
<td>198.000</td>
</tr>
<tr>
<td>RP024R16</td>
<td>ACEITE KUBOTA 88W90 SX1 TRANSM</td>
<td>1</td>
<td>190.760</td>
<td>0</td>
<td>190.760</td>
<td>0.16</td>
<td>31.482</td>
<td>222.242</td>
</tr>
<tr>
<td>12.4-24 TR171</td>
<td>12.4-24 8 PR BKT TR171 TT</td>
<td>2</td>
<td>1.090.000</td>
<td>0</td>
<td>2.180.000</td>
<td>0.00</td>
<td>0</td>
<td>2.180.000</td>
</tr>
<tr>
<td>18.4-30/1</td>
<td>18.4-30 12PR BKT TR273 TT # 1</td>
<td>2</td>
<td>2.200.000</td>
<td>0</td>
<td>4.400.000</td>
<td>0.00</td>
<td>0</td>
<td>4.400.000</td>
</tr>
</tbody>
</table>

TOTAL CANTIDADES:
17

VALOR SIN IVA:
8.103.631

DESCUENTOS:
21.424

VALOR IVA:
249.353

VALOR TOTAL:
8.322.580

Observaciones: TRACTOR M9540 MANTENIMIENTO GENERAL

Dependencia de Ventas.

* Los precios de la presente cotización están sujetos al vencimiento de la misma.

* OFICINA: KM 24 CARRETERA CENTRAL DEL NORTE P.B.X.676 13 14 FAX 676 1328
13. REFERENCIAS (BIBLIOGRAFÍA)

KUBOTA TRACTOR, Manual del Operador Kubota M9540 1AGAIDFAP116A

KUBOTA Modelo M9540 Lista de Piezas Junio 2009 97898-24590

NEBRASKA TRACTOR TEST LABORATORY; 2016 University of Nebraska–Lincoln · 402-472-7211.

Garcia, Pedro; Solano, Guillermo; (2010); Propuesta de mantenimiento preventivo en la industria de plásticos Rucito Ltda; Proyecto de grado Esp. Gerencia de Mantenimiento; Universidad ECCI.

Castro, Melisa; Moreno, Rafael; (2010); Propuesta de un plan de gestión ambiental para controlar problemas de contaminación generados por las labores de mantenimiento relacionados con pinturas, sandblasting y fibras aplicados a los tracto camiones y buses en kenworth de la montaña Bogotá. Proyecto de grado Esp. Gerencia de Mantenimiento; Universidad ECCI.

Casas, Mario; Madroñero, Rubén; (2011); Diseño de un plan de mantenimiento adecuado para los equipos del centro de diagnósticos automotor Servicoches CDA. Proyecto de grado Esp. Gerencia de Mantenimiento; Universidad ECCI.
Hernández, Armando; (2011); Propuesta de plan de mantenimiento preventivo para la flota vehicular de la empresa suramericana de transportes. Proyecto de grado Esp. Gerencia de Mantenimiento; Universidad ECCI.

Cortez, Jair; Prieto, Nelson; (2012); Propuesta de aplicación de la metodología PMO (optimización de mantenimiento planeado) en el plan e mantenimiento de los vehículos de la empresa transmasivo s.a. Proyecto de grado Esp. Gerencia de Mantenimiento; Universidad ECCI.

Sanabria, Julian; (2008); Servicio de mantenimiento preventivo en los vehículos de marca chevrolet para uso del concesionario Campesa s.a. Proyecto de grado Esp. Gerencia de Mantenimiento; Universidad ECCI.

Arias, Flor; Suarez, Nelba; Suarez, Monica; (2006); Análisis para la prevención de pérdidas en vehículos empresa Frito Lay Colombia s.a. Proyecto de grado Esp. Gerencia de Mantenimiento; Universidad ECCI.

Torres, Daniel; (2007); Diseño de un plan de mantenimiento preventivo para la empresa Centrifugados Concisa Ltda. Proyecto de grado Esp. Gerencia de Mantenimiento; Universidad ECCI.

Silva, Carlos; (2007); Diseño de un sistema para equipos móviles de un transporte de carga terrestre. Proyecto de grado Esp. Gerencia de Mantenimiento; Universidad ECCI.

Montes, Juan; (2013); Diseño de un plan de mantenimiento para la flota articulada de integra s.a. usando algunas herramientas del mantenimiento centrado en la confiabilidad. Proyecto de grado Esp. Gerencia de Mantenimiento; Universidad ECCI.
Monserrate, Florencio; (2015); Proyecto de factibilidad para la creación de un taller mecánico, de mantenimiento exprés, a vehículos livianos para el Cantón san miguel de los Bancos de la Provincia de pichincha. Ecuador.

Cabrera, Jaen; Gorotiza, Julio; (2015) Proyecto análisis de los procesos de reparación de vehículos y su incidencia en los tiempos de entrega en la empresa Autoquil. Ecuador.

Cuevas, Feliciano; Cuevas, Oscar; (2007) Mantenimiento preventivo para automóviles Chevrolet (Chevy mod 02-06); Mexico.

Calero, Jesus; Gonzalez, Elvira; Perez, salvador; (2001); Metodología de implantación o de mejora de un sistema de gestión del mantenimiento. España.

Simeon, Jekayina; (2000); Aplicaciones y estudio de casos para la valoración de tractores agrícolas, Prácticas de mantenimiento y costos en Nigeria.

14. REFERENCIAS (CIBERGRAFÍA)

http://tractortestlab.unl.edu/
http://www.colomguia.com/maquinaria-agricola/