Mostrar el registro sencillo del ítem

dc.contributor.advisorMartinez Mora, Ivan
dc.contributor.authorPlata Enrrique, Jorge Luis
dc.date.accessioned2022-05-11T23:00:31Z
dc.date.available2022-05-11T23:00:31Z
dc.date.issued2015
dc.identifier.urihttps://repositorio.ecci.edu.co/handle/001/2737
dc.description.abstractEl objeto de este trabajo fue el de realizar la polimerización de la anilina en el laboratorio de la Universidad ECCI, utilizando la síntesis química y electroquímica. La polimerización química es una polimerización oxidativa en la que se utilizó como agente oxidante el persulfato de amonio, se trabajó en medio ácido. La reacción tuvo lugar durante unas tres horas, tras las cuales el precipitado fue filtrado y lavado, con el mismo ácido utilizado como medio y finalmente con agua. La polimerización electroquímica consiste en la oxidación anódica de la anilina sobre un electrodo para formar películas de PANI, el polímero sintetizado utilizando esta técnica mostró buenas características conductivas, fue sintetizado en medio acido en disolución con ácido clorhídrico y dos electrodos de cobre, durante alrededor de 10 minutos. El resultado fue un cambio de color por efecto del paso de corriente, aplicando un potencial alrededor de 1,50 V y un agente dopante (ácido clorhídrico y cloruro de potasio), luego al ser retirado el paso de corriente, apagando la fuente de voltaje, el polímero volvió por si solo a un estado transparente.spa
dc.description.abstractThe purpose of this study was to carry out the polymerization of aniline in the laboratory of the ECCI University, using chemical and electrochemical synthesis. The polymerization is a chemical oxidative polymerization in which is used as oxidizing agent ammonium persulfate, we worked in acid medium in acid solution. The reaction proceeded for three hours, after which the precipitate was filtered and washed with the same acid used as medium and finally with water. The electrochemical polymerization is anodic oxidation of aniline to an electrode to form films of PANI, the polymer synthesized using this technique showed good conductive characteristics, was synthesized in acidic solution with hydrochloric acid and two copper electrodes, for about 10 minutes. The result was a color change by effect of the passage of current, applying a potential of about 1.50 V and a dopant agent xiii (hydrochloric acid and potassium chloride), then upon removal of the passage of current, turning off the voltage source the polymer returned by itself to a transparent state. Keywords: polyaniline, Chemical Synthesis, Electrochemical synthesis; conducting polymereng
dc.description.tableofcontentsINDICE DE TABLAS INDICE DE FIGURAS GLOSARIO RESUMEN ABSTRACT 1 TITULO DE LA INVESTIGACIÓN 2 INTRODUCCIÓN 3 PROBLEMA DE INVESTIGACIÓN 31 DESCRIPCIÓN PROBLEMA DE INVESTIGACIÓN 32 PREGUNTA DE INVESTIGACIÓN 4 OBJETIVOS DE LA INVESTIGACIÓN 41 OBJETIVO GENERAL 42 OBJETIVOS ESPECIFICOS 5 JUSTIFICACIÓN Y DELIMITACION DE LA INVESTIGACIÓN 51 JUSTIFICACIÓN 52 DELIMITACIÓN 6 ALCANCES DEL PROYECTO DE INVESTIGACIÓN 7 MARCO TEORICO 71 POLIMERO 72 CLASIFICACIÓN GENERAL DE LOS POLÍMEROS 73 POLÍMEROS CONDUCTORES 74 HISTORIA DE LOS POLÍMEROS CONDUCTORES 75 CONDUCTIVIDAD EN POLÍMEROS 77 POLIANILINA (PANI) 78 POLIANILINAS MODIFICADAS 8 RESULTADOS Y PROCEDIMIENTOS 81 SINTESIS QUIMICA DE LA POLIANILINA 811 MATERIALES Y REACTIVOS 812 PROCEDIMIENTO 813 RESULTADOS 82 SINTESIS ELECTROQUIMICA DE LA POLIANILINA 821 MATERIALES Y REACTIVOS 822 PROCEDIMIENTO 823 RESULTADOS 83 RESUMEN DE RESULTADOS 9 CONCLUSIONES 10 RECOMENDACIONES 11 BIBLIOGRAFIAspa
dc.format.extent67 p.spa
dc.format.mimetypeapplication/pdfspa
dc.publisherUniversidad ECCIspa
dc.rightsDerechos Reservados - Universidad ECCI, 2015spa
dc.titleObtención de poli anilina a través de síntesis química y electroquímica en el laboratorio de química de la universidad Eccispa
dc.typeTrabajo de grado - Especializaciónspa
dc.publisher.placeColombiaspa
dc.relation.references1. Macdiarmid, A.G.; Chiang, J.C.; Richter, A.F.; Epstein, A.J. Polyaniline: A new concept in conducting polymers. Synth. Met. 1987, 18, 285–290.spa
dc.relation.references2. Sanchis Bermúdez, Carlos. Síntesis y Caracterización de Polianilinas Auto-Dopadas por Copolimerizacion de Anilina y Acido 2- Aminobencenosulfonico, Aplicaciones como Biosensores y Electrocatalizadores. 2012, 13-28.spa
dc.relation.references3. Real Academia de la Lengua Española. Anal. Chem. 2006, 78, 4260– 4269spa
dc.relation.references4. Zhang, D.; Wang, Y. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview. Mater. Sci. Eng. B 2006, 134, 9– 19spa
dc.relation.references5. Mulchandani, A.; Myung, N.V. Conducting polymer nanowires-based label-free biosensors. Curr. Opin. Biotechnol. 2011, 22, 502–508. Nanomaterials 2013, 3- 514spa
dc.relation.references6. Ramgir, N.S.; Yang, Y.; Zacharias, M. Nanowire-based sensors. Small 2010, 6, 1705–1722. 7. Matlock-Colangelo, L.; Baeumner, A.J. Recent progress in the design of nanofiber-based biosensing devices. Lab. Chip 2012, 12, 2612–2620spa
dc.relation.references8. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56– 58.spa
dc.relation.references9. Wang, J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 2005, 17, 7–14.spa
dc.relation.references10. Jacobs, C.B.; Peairs, M.J.; Venton, B.J. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010, 662, 105–127spa
dc.relation.references11. Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292spa
dc.relation.references12. Patolsky, F.; Lieber, C.M. Nanowire nanosensors. Mater. Today 2005, 8, 20–28.spa
dc.relation.references13. Yogeswaran, U.; Chen, S.-M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 2008, 8, 290–313spa
dc.relation.references14. Sunkara, M.K.; Sharma, S.; Miranda, R.; Lian, G.; Dickey, E.C. Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method. Appl. Phys. Lett. 2001, 79, 1546–1548spa
dc.relation.references15. J. Vivekanandan, V. Ponnusamy, A. Mahudeswaran and P.S. Vijayanand. Synthesis, characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods. Archives of Applied Science Research, 2011, 3 (6):147-153spa
dc.relation.references16. Wang, J.; Bunimovich, Y.L.; Sui, G.; Savvas, S.; Wang, J.; Guo, Y.; Heath, J.R.; Tseng, H.-R. Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system. Chem. Commun. 2006, 29, 3075–3077spa
dc.relation.references17. Wang, J.; Chan, S.; Carlson, R.R.; Luo, Y.; Ge, G.; Ries, R.S.; Heath, J.R.; Tseng, H.-R. Electrochemically fabricated polyaniline nanoframework electrode junctions that function as resistive sensors. Nano Lett. 2004, 4, 1693–1697spa
dc.relation.references18. Kuhn, P.; Puigmartí-Luis, J.; Imaz, I.; Maspoch, D.; Dittrich, P.S. Controlling the length and location of in situ formed nanowires by means of microfluidic tools. Lab Chip 2011, 11, 753–757.spa
dc.relation.references19. Hou, S.; Wang, S.; Yu, Z.T.F.; Zhu, N.Q.M.; Liu, K.; Sun, J.; Lin, W.-Y.; Shen, C.K.-F.; Fang, X.; Tseng, H.-R. A hydrodynamically focused stream as a dynamic template for site-specific electrochemical micropatterning of conducting polymers. Angew. Chem. 2008, 120, 1088–1091spa
dc.relation.referencesconducting polymers. Angew. Chem. 2008, 120, 1088–1091. 20. Puigmartí-Luis, J.; Schaffhauser, D.; Burg, B.R.; Dittrich, P.S. A microfluidic approach for the formation of conductive nanowires and hollow hybrid structures. Adv. Mater. 2010, 22, 2255–2259.spa
dc.relation.references21. Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 1977, 578–580.spa
dc.relation.references22. Macdiarmid, A.G.; Chiang, J.C.; Richter, A.F.; Epstein, A.J. Polyaniline: A new concept in conducting polymers. Synth. Met. 1987, 18, 285–290spa
dc.relation.references23. Sergeyeva, T.A.; Lavrik, N.V.; Piletsky, S.A.; Rachkov, A.E.; El’skaya, A.V. Polyaniline label-based conductometric sensor for IgG detection. Sens. Actuators B 1996, 34, 283–288.spa
dc.relation.references24. Gerard, M.; Chaubey, A.; Malhotra, B.D. Application of conducting polymers to biosensors. Biosens. Bioelectron. 2002, 17, 345–359.spa
dc.relation.references25. Dhand, C.; Das, M.; Datta, M.; Malhotra, B.D. Recent advances in polyaniline based biosensors. Biosens. Bioelectron. 2011, 26, 2811–2821.spa
dc.relation.references26. Lange, U.; Roznyatovskaya, N.V.; Mirsky, V.M. Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 2008, 614, 1–26.spa
dc.relation.references27. Reddinger, J.; Reynolds, J. Molecular Engineering of π-Conjugated Polymers. In Advances in Polymer Science; Springer: Berlin, Heidelberg, Germany, 1999; Volume 145, pp. 57–122spa
dc.relation.references28. MacDiarmid, A.G.; Epstein, A.J. Polyanilines: A novel class of conducting polymers. Faraday Discuss. Chem. Soc. 1989, 88, 317–332spa
dc.relation.references29. MacDiarmid, A.G.; Syed, A.A.; Dinesan, M.K. Review: Polyaniline—A novel polymeric material. Talanta 1991, 38, 815–837.spa
dc.relation.references30. Geniès, E.M.; Boyle, A.; Lapkowski, M.; Tsintavis, C. Polyaniline: A historical survey. Synth. Met. 1990, 36, 139–182spa
dc.relation.references31. Huang, W.-S.; Humphrey, B.D.; MacDiarmid, A.G. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J. Chem. Soc. Faraday Trans. 1 1986, 82, 2385–2400.spa
dc.relation.references32. Bhadra, S.; Khastgir, D.; Singha, N.K.; Lee, J.H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34, 783–810.spa
dc.relation.references33. Stejskal, J.; Sapurina, I.; Trchová, M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 2010, 35, 1420–1481spa
dc.relation.references34. Tran, H.D.; Wang, Y.; D’Arcy, J.M.; Kaner, R.B. Toward an understanding of the formation of conducting polymer nanofibers. ACS Nano 2008, 2, 1841–1848.spa
dc.relation.references35. Gupta, V.; Miura, N. Large-area network of polyaniline nanowires prepared by potentiostatic deposition process. Electrochem. Commun. 2005, 7, 995–999spa
dc.relation.references36. Macdiarmid, A.G.; Mu, S.-L.; Somasiri, N.L.D.; Wu, W. Electrochemical characteristics of “polyaniline” cathodes and anodes in aqueous electrolytes. Mol. Cryst. Liq. Cryst. 1985, 121, 187–190.spa
dc.relation.references37. Gupta, V.; Miura, N. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Mater. Lett. 2006, 60, 1466–1469spa
dc.relation.references38. Zhiani, M.; Gharibi, H.; Kakaei, K. Performing of novel nanostructure MEA based on polyaniline modified anode in direct methanol fuel cell. J. Power Sources 2012, 210, 42–46.spa
dc.relation.references39. Kelly, F.M.; Meunier, L.; Cochrane, C.; Koncar, V. Polyaniline: Application as solid state electrochromic in a flexible textile display. Displays 2013, 34, 1–7.spa
dc.relation.references40. Anderson, M.R.; Mattes, B.R.; Reiss, H.; Kaner, R.B. Conjugated polymer films for gas separations. Science 1991, 252, 1412–1415.spa
dc.relation.references41. Chang, C.-H.; Huang, T.-C.; Peng, C.-W.; Yeh, T.-C.; Lu, H.-I.; Hung, W.-I.; Weng, C.-J.; Yang, T.-I.; Yeh, J.-M. Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 2012, 50, 5044– 5051.spa
dc.relation.references42. Focke, W.W.; Wnek, G.E.; Wei, Y. Influence of oxidation state, pH, and counterion on the conductivity of polyaniline. J. Phys. Chem. 1987, 91, 5813–5818spa
dc.relation.references43. Zhang, X.; Goux, W.J.; Manohar, S.K. Synthesis of polyaniline nanofibers by “nanofiber seeding”. J. Am. Chem. Soc. 2004, 126, 4502– 4503spa
dc.relation.references44. Stafström, S.; Brédas, J.L.; Epstein, A.J.; Woo, H.S.; Tanner, D.B.; Huang, W.S.; MacDiarmid, A.G. Polaron lattice in highly conducting polyaniline: Theoretical and optical studies. Phys. Rev. Lett. 1987, 59, 1464–1467.spa
dc.relation.references45. Heeger, A.J. Semiconducting and metallic polymers: The fourth generation of polymeric materials. J. Phys. Chem. B 2001, 105, 8475–8491spa
dc.relation.references46. Ray, A.; Richter, A.F.; MacDiarmid, A.G.; Epstein, A.J. Polyaniline: Protonation/deprotonation of amine and imine sites. Synth. Met. 1989, 29, 151–156.spa
dc.relation.references47. Nechtschein, M.; Genoud, F.; Menardo, C.; Mizoguchi, K.; Travers, J.P.; Villeret, B. On the nature of the conducting state of polyaniline. Synth. Met. 1989, 29, 211–218spa
dc.relation.references48. McManus, P.M.; Cushman, R.J.; Yang, S.C. Influence of oxidation and protonation on the electrical conductivity of polyaniline. J. Phys. Chem. 1987, 91, 744–747.spa
dc.relation.references49. Genies, E.M.; Tsintavis, C. Redox mechanism and electrochemical behaviour or polyaniline deposits. J. Electroanal. Chem. Interfacial Electrochem. 1985, 195, 109–128.spa
dc.relation.references50. Geniès, E.M.; Lapkowski, M.; Penneau, J.F. Cyclic voltammetry of polyaniline: Interpretation of the middle peak. J. Electroanal. Chem. Interfacial Electrochem. 1988, 249, 97–107spa
dc.relation.references51. Nunziante, P.; Pistoia, G. Factors affecting the growth of thick polyaniline films by the cyclic voltammetry technique. Electrochim. Acta 1989, 34, 223–228.spa
dc.relation.references52. MacDiarmid, A.G. “Synthetic metals”: A novel role for organic polymers (Nobel lecture). Angew. Chem. Int. Ed. 2001, 40, 2581–2590.spa
dc.relation.references53. Focke, W.W.; Wnek, G.E. Conduction mechanisms in polyaniline (emeraldine salt). J. Electroanal. Chem. Interfacial Electrochem. 1988, 256, 343–352.spa
dc.relation.references54. Saheb, A.H.; Seo, S.S. UV-vis and Raman spectral analysis of polyaniline/gold thin films as a function of applied potential. Anal. Lett. 2011, 44, 1206–1216.spa
dc.relation.references55. Kobayashi, T.; Yoneyama, H.; Tamura, H. Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 281–291.spa
dc.relation.references56. Li, Q.; Cruz, L.; Phillips, P. Granular-rod model for electronic conduction in polyaniline. Phys. Rev. B 1993, 47, 1840–1845.spa
dc.relation.references57. Li, W.; Wan, M. Porous polyaniline films with high conductivity. Synth. Met. 1998, 92, 121–126.spa
dc.relation.references58. Mott, N.F.; Davis, E.A. Electronic Processes in Non-Crystalline Materials; Oxford University Press: Oxford, UK, 2012, 340-344spa
dc.relation.references59. Joo, J.; Long, S.M.; Pouget, J.P.; Oh, E.J.; MacDiarmid, A.G.; Epstein, A.J. Charge transport of the mesoscopic metallic state in partially crystalline polyanilines. Phys. Rev. B 1998, 57, 9567–9580.spa
dc.relation.references60. Ghosh, M.; Barman, A.; De, S.K.; Chatterjee, S. Crossover from Mott to Efros-Shklovskii variable-range-hopping conductivity in conducting polyaniline. Synth. Met. 1998, 97, 23–29.spa
dc.relation.references61. Sheng, P.; Abeles, B.; Arie, Y. Hopping conductivity in granular metals. Phys. Rev. Lett. 1973, 31, 44–47.spa
dc.relation.references62. Lin, Y.-F.; Chen, C.-H.; Xie, W.-J.; Yang, S.-H.; Hsu, C.-S.; Lin, M.-T.; Jian, W.-B. Nano approach investigation of the conduction mechanism in polyaniline nanofibers. ACS Nano 2011, 5, 1541–1548spa
dc.relation.references63. Zhou, Y.; Freitag, M.; Hone, J.; Staii, C.; Johnson, A.T.; Pinto, N.J.; MacDiarmid, A.G. Fabrication and electrical characterization of polyaniline based nanofibers with diameter below 30 nm. Appl. Phys. Lett. 2003, 83, 3800–3802.spa
dc.relation.references64. Liu, W.; Kumar, J.; Tripathy, S.; Senecal, K.J.; Samuelson, L. Electrochemical synthesis and characterization of chloride doped polyaniline. Bull. Mater. Sci., Vol. 26, No. 3, April 2003, pp. 329–334.spa
dc.relation.references65. Ma, Y.; Zhang, J.; Zhang, G.; He, H. Polyaniline nanowires on Si surfaces fabricated with DNA templates. J. Am. Chem. Soc. 2004, 126, 7097–7101spa
dc.relation.references66. Trchová, M.; Šeděnková, I.; Konyushenko, E.N.; Stejskal, J.; Holler, P.; Ćirić-Marjanović, G. Evolution of polyaniline nanotubes: The oxidation of aniline in water. J. Phys. Chem. B 2006, 110, 9461–9468.spa
dc.relation.references67. Zhang, L.; Zujovic, Z.D.; Peng, H.; Bowmaker, G.A.; Kilmartin, P.A.; Travas-Sejdic, J. Structural characteristics of polyaniline nanotubes synthesized from different buffer solutions. Macromolecules 2008, 41, 8877–8884spa
dc.relation.references68. Chiou, N.-R.; Epstein, A.J. Polyaniline nanofibers prepared by dilute polymerization. Adv. Mater. 2005, 17, 1679–1683spa
dc.relation.references69. Wei, Y.; Tang, X.; Sun, Y.; Focke, W.W. A study of the mechanism of aniline polymerization. J. Polym. Sci. Part Polym. Chem. 1989, 27, 2385– 2396spa
dc.relation.references70. Yang, H.; Bard, A.J. The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions. J. Electroanal. Chem. 1992, 339, 423–449.spa
dc.relation.references71. Li, D.; Huang, J.; Kaner, R.B. Polyaniline nanofibers: A unique polymer nanostructure for versatile applications. Acc. Chem. Res. 2009, 42, 135– 145.spa
dc.relation.references72. Huang, J.; Kaner, R.B. Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angew. Chem. 2004, 116, 5941–5945spa
dc.relation.references73. Dias, H.V.R.; Wang, X.; Rajapakse, R.M.G.; Elsenbaumer, R.L. A mild, copper catalyzed route to conducting polyaniline. Chem. Commun. 2006, 976–978.spa
dc.relation.references74. Huang, J.; Kaner, R.B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 851–855spa
dc.relation.references75. Huang, J.; Virji, S.; Weiller, B.H.; Kaner, R.B. Polyaniline nanofibers: Facile synthesis and chemical sensors. J. Am. Chem. Soc. 2003, 125, 314– 315.spa
dc.relation.references76. Qiang, J.; Yu, Z.; Wu, H.; Yun, D. Polyaniline nanofibers synthesized by rapid mixing polymerization. Synth. Met. 2008, 158, 544–547.spa
dc.relation.references77. Martin, C.R. Template synthesis of electronically conductive polymer nanostructures. Acc. Chem. Res. 1995, 28, 61–68.spa
dc.relation.references78. Martin, C.R. Nanomaterials: A membrane-based synthetic approach. Science 1994, 266, 1961–1966spa
dc.relation.references79. Li, G.; Zhang, C.; Li, Y.; Peng, H.; Chen, K. Rapid polymerization initiated by redox initiator for the synthesis of polyaniline nanofibers. Polymer 2010, 51, 1934–1939.spa
dc.relation.references80. J. Stejskal. Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl. Chem., Vol. 74, No. 5, pp. 857–867spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.proposalPolimerización Químicaspa
dc.subject.proposalPoli Anilinaspa
dc.subject.proposalPolímero Conductorspa
dc.subject.proposalChemical Polymerizationeng
dc.subject.proposalPoly Anilineeng
dc.subject.proposalConductivePolymereng
dc.type.coarhttp://purl.org/coar/resource_type/c_46ecspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/otherspa
dc.type.redcolhttps://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dc.description.degreelevelEspecializaciónspa
dc.description.degreenameIngeniero en Plásticosspa
dc.description.programIngeniería de Plásticosspa
dc.publisher.facultyPosgradosspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem