Mostrar el registro sencillo del ítem

dc.contributor.advisorPacheco Londoño, Leonardo C.
dc.contributor.advisorGalán Freyle, Nataly
dc.contributor.authorPlata Enríquez, Jorge Luis
dc.date.accessioned2021-01-29T05:06:39Z
dc.date.available2021-01-29T05:06:39Z
dc.date.issued2021-01-20
dc.identifier.urihttps://repositorio.ecci.edu.co/handle/001/785
dc.description.abstractEl quitosano es el polisacárido natural más abundante y puede ser preparado química y enzimáticamente a partir de la quitina. Este material tiene propiedades de biodegradabilidad, biocompatibilidad y antibacterial. El presente estudio fue llevado a cabo para producir láminas delgadas de un polímero biodegradable de quitosano con nanopartículas de dióxido de titanio (NPsTiO2) dopadas con pequeñas trazas de óxidos de vanadio y la obtención de TiO2 dopados con VO2 a partir de la calcinación de las láminas. Se obtuvieron láminas delgadas de quitosano, donde se evidencia la incorporación tanto de NPsTiO2 como de los diferentes óxidos de vanadio. Se comprobó la presencia tanto de las NPsTiO2 como de los diferentes dopantes de vanadio a través de la caracterización por, microscopía de barrido electrónico (SEM), Espectrometría Raman, espectroscopia infrarroja por transformada de Fourier – reflexión total atenuada (Fourier Transform Infrared Spectroscopy – Attenuated Total Reflection) (FTIR-ATR), y además se hizo una caracterización mecánica por medio de ensayo de tracción en máquina universal. El material calcinado fue evaluado por difracción de rayos X (XRD) y Espectrometría Raman. Para dopar el material quitosano/ NPsTiO2 con el vanadio, se utilizó metavanadato de amonio (NH4VO3), óxido de amonio (V) (V2O5) y óxido de vanadio (IV) (VO2). También se estudiaron diferentes técnicas de síntesis para garantizar homogeneidad en las láminas delgadas obtenidas, esto se hizo disolviendo los diferentes óxidos de vanadio en el precursor de la formación de las NPsTiO2, luego añadiendo la solución de quitosano, previamente preparada, logrando generar los resultados buscados. Se obtuvieron laminas delgadas de quitosano, donde se evidencia la incorporación tanto de NPsTiO2 como de los diferentes óxidos de vanadio.
dc.description.tableofcontentsRESUMEN. 8 INTRODUCCIÓN 9 1. TÍTULO DE LA INVESTIGACIÓN 10 2. PROBLEMA DE INVESTIGACIÓN 10 2.1. DESCRIPCIÓN DEL PROBLEMA 10 2.2. FORMULACIÓN DEL PROBLEMA 11 3. OBJETIVOS DE LA INVESTIGACIÓN 12 3.1. OBJETIVO GENERAL 12 3.2. OBJETIVOS ESPECÍFICOS 12 4. JUSTIFICACIÓN Y DELIMITACIÓN DE LA INVESTIGACIÓN 13 4.1. JUSTIFICACIÓN 13 4.2. LIMITACIONES 13 5. MARCO DE REFERENCIA DE LA INVESTIGACIÓN 14 5.1. ESTADO DEL ARTE 14 5.2. MARCO TEORICO 16 5.2.1.1. Industria de Alimentos 16 5.2.1.4. Industria Textil 18 5.2.1.5. Industria de Papel 18 5.2.1.6. Tratamiento de aguas 18 5.2.2. Aplicaciones Biomédicas 19 5.2.3. Aplicaciones de Quitosano con Dióxido de Titanio 20 5.2.4. Técnicas de Caracterización 21 6. MARCO METODOLÓGICO 23 6.1. Materiales: 23 6.2. Métodos Experimentales 24 6.2.1. Fase 1. Síntesis de Quitosano/TiO2. 24 6.2.2. Fase 2. Dopado con Vanadio. 25 6.2.3. Fase 3. Caracterización de láminas de Quitosano/TiO2/ Vanadio. 26 6.3. Cronograma 27 7. RESULTADOS 29 7.1 Fase 1. Síntesis de Quitosano/TiO2. 29 7.2 Fase 2. Dopado con Vanadio. 29 7.3 Fase 3. Caracterización de láminas de Quitosano/TiO2/ Vanadio. 29 8. Análisis y discusión de los resultados 55 9. CONCLUSIONES 57 10. BIBLIOGRAFIA 59
dc.format.extent60 p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsDerechos Reservados - Universidad CECCI, 2016
dc.titleObtención y caracterización de láminas de quitosano/dióxido de titanio dopadas con vanadio
dc.title.alternativeOBTAINING AND CHARACTERIZING CHITOSANE / TITANIUM DIOXIDE SHEETS DOPED WITH VANADIUM
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.researchgroupSiAMospa
dc.relation.referencesAfzal, S., Samsudin, E. M., Mun, L. K., Julkapli, N. M., & Hamid, S. B. A. (2017). Room temperature synthesis of TiO2supported chitosan photocatalyst: Study on physicochemical and adsorption photo-decolorization properties. Materials Research Bulletin, 86, 24–29. https://doi.org/10.1016/j.materresbull.2016.09.028spa
dc.relation.referencesAkter Mukta, J., Rahman, M., As Sabir, A., Gupta, D. R., Surovy, M. Z., Rahman, M., & Islam, M. T. (2017). Chitosan and plant probiotics application enhance growth and yield of strawberry. Biocatalysis and Agricultural Biotechnology, 11(October), 9–18. https://doi.org/10.1016/j.bcab.2017.05.005spa
dc.relation.referencesAli, M. E. a. (2018). Synthesis and adsorption properties of chitosan-CDTA-GO nanocomposite for removal of hexavalent chromium from aqueous solutions. Arabian Journal of Chemistry, 11(7), 1107–1116. https://doi.org/10.1016/j.arabjc.2016.09.010spa
dc.relation.referencesArca, H. Ç., & Şenel, S. (2008). Chitosan based systems for tissue engineering part II: Soft tissues. Fabad Journal of Pharmaceutical Sciences, 33(4), 211–216.spa
dc.relation.referencesBawn, C. E. H. (1976). Recent advances in polymer science. Polymer (Vol. 17). https://doi.org/10.1016/0032-3861(76)90122-1spa
dc.relation.referencesCamo, A. (2019). The Unscrambler. Oslo, Noruega: Camo Analytics. Retrieved from https://www.camo.com/unscrambler/spa
dc.relation.referencesChaudhari, P., Chaudhari, V., & Mishra, S. (2016). Low Temperature Synthesis of Mixed Phase Titania Nanoparticles with High Yield, its Mechanism and Enhanced Photoactivity. Materials Research, 19(2), 446–450. https://doi.org/10.1590/1980-5373-MR-2015-0692spa
dc.relation.referencesChawla, S. P., Kanatt, S. R., & Sharma, a. K. (2015). Chitosan. Polysaccharides: Bioactivity and Biotechnology. Elsevier Inc. https://doi.org/10.1007/978-3-319-16298-0_13spa
dc.relation.referencesChung, Y. (China I. T., Su, Y. (National T. N. U., Chen, C. (National T. N. C., Jia, G. (School of P. H., Wang, H. (Fooyin U., Wu, J. C. G. (National T. N. U., & Lin, J. (China M. U. (2004). Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacologica Sinica, 7(25), 932–936. https://doi.org/10.5539/ijbm.v6n10p230spa
dc.relation.referencesDi Martino, A., Sittinger, M., & Risbud, M. V. (2005). Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 26(30), 5983–5990. https://doi.org/10.1016/j.biomaterials.2005.03.016spa
dc.relation.referencesDutta, P. K., Duta, J., & Tripathi, V. S. (2004). Chitin and Chitosan: Chemistry, properties and applications. Journal of Scientific and Industrial Research, 63(1), 20–31. https://doi.org/10.1002/chin.200727270spa
dc.relation.referencesFarhadian Azizi, K., & Bagheri-Mohagheghi, M. M. (2013). Transition from anatase to rutile phase in titanium dioxide (TiO2) nanoparticles synthesized by complexing sol-gel process: Effect of kind of complexing agent and calcinating temperature. Journal of Sol-Gel Science and Technology, 65(3), 329–335. https://doi.org/10.1007/s10971-012-2940-2spa
dc.relation.referencesFujishima, A., & Honda, K. (1972). Electrochemical Photolysis of Water One and Twodimensional Structure of Poly ( L-Alanine ) shown by Specific Heat Measurements at Low. Nature, 238, 37–38.spa
dc.relation.referencesGilson, T. R. (University of S. (1973). Single-crystal Raman and Infrared Spectra of Vanadium(v) Oxide.spa
dc.relation.referencesHamden, Z., Bouattour, S., Ferraria, a. M., Ferreira, D. P., Vieira Ferreira, L. F., Botelho do Rego, a. M., & Boufi, S. (2016a). In situ generation of TiO2 nanoparticles using chitosan as a template and their photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 321, 211–222. https://doi.org/10.1016/j.jphotochem.2016.02.008spa
dc.relation.referencesHamden, Z., Bouattour, S., Ferraria, a. M., Ferreira, D. P., Vieira Ferreira, L. F., Botelho do Rego, a. M., & Boufi, S. (2016b). In situ generation of TiO2 nanoparticles using chitosan as a template and their photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 321, 211–222. https://doi.org/10.1016/j.jphotochem.2016.02.008spa
dc.relation.referencesHamdia, a., Boufib, S., & Bouattour, S. (2015). Phthalocyanine/chitosan-TiO2photocatalysts: Characterization and photocatalytic activity. Applied Surface Science, 339(1), 128–136. https://doi.org/10.1016/j.apsusc.2015.02.102spa
dc.relation.referencesHirano, S., & Nagao, N. (1989). Effects of Chitosan, Pectic Acid, Lysozyme, and Chitinase on the Growth of Several Phytopathogens. Agricultural and Biological Chemistry, 53(11), 3065–3066. https://doi.org/10.1080/00021369.1989.10869777spa
dc.relation.referencesHossain, M. S., & Iqbal, a. (2014). Production and characterization of chitosan from shrimp waste. J. Bangladesh Agril. Univ, 12(1), 153–160spa
dc.relation.referencesIman Bin Amir, M. N. (University of M. (2016). CHITOSAN-TITANIUM DIOXIDE (CS-TIO2) CATALYST SYNTHESIZED ON GLASS SUBSTRATE FOR PHOTODEGRADATION. (University of Malaya).spa
dc.relation.referencesJayakumar, R., Prabaharan, M., Sudheesh Kumar, P. T., V., S., Furuike, T., & Tamur, H. (2011). Novel Chitin and Chitosan Materials in Wound Dressing. Biomedical Engineering, Trends in Materials Science, 3–25. https://doi.org/10.5772/1350spa
dc.relation.referencesKarthikeyan, K. T., Nithya, a., & Jothivenkatachalam, K. (2017). Photocatalytic and antimicrobial activities of chitosan-TiO2nanocomposite. International Journal of Biological Macromolecules, 104, 1762–1773. https://doi.org/10.1016/j.ijbiomac.2017.03.121spa
dc.relation.referencesKumar, M. N. V. R. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46, 1–27. https://doi.org/10.1016/S1381-5148(00)00038-9spa
dc.relation.referencesLife, S. (2002). Seed Treatments for Small Grain Cereals. Planter, (February).spa
dc.relation.referencesLiu, P. P., Liu, X., Huo, X. H., Tang, Y., Xu, J., & Ju, H. (2017). TiO2-BiVO4 Heterostructure to Enhance Photoelectrochemical Efficiency for Sensitive Aptasensing. ACS Applied Materials and Interfaces, 9(32), 27185–27192. https://doi.org/10.1021/acsami.7b07047spa
dc.relation.referencesLiu, X., & Zhang, L. (2015). Insight into the adsorption mechanisms of vanadium(V) on a highefficiency biosorbent (Ti-doped chitosan bead). International Journal of Biological Macromolecules, 79, 110–117. https://doi.org/10.1016/j.ijbiomac.2015.04.065spa
dc.relation.referencesNavarro, R., Revilla, J., Guibal, E., Saucedo, I., & Guzmán, J. (2002). Vanadium Interactions with Chitosan: Influence of Polymer Protonation and Metal Speciation. Langmuir, 18(5), 1567–1573. https://doi.org/10.1021/la010802nspa
dc.relation.referencesNawanopparatsakul, S. (2005). Skin irritation test of curcuminoids facial mask containing chitosan as a binder. … Uni Versity J, 140–147.spa
dc.relation.referencesNo, H. K., & Meyers, S. P. (1995). Journal of Aquatic Food Product Preparation and Characterization of Chitin and Chitosan — A Review. Journal of Aquatic Food Product Technology, 4(2), 27–52. https://doi.org/10.1300/J030v04n02_03spa
dc.relation.referencesOhsaka, T., Izumi, F., & Fujiki, Y. (1978). Raman spectrum of anatase, TiO2. Journal of Raman Página 60 de 60 Spectroscopy, 7(6), 321–324. https://doi.org/10.1002/jrs.1250070606spa
dc.relation.referencesPillai, C. K. S., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science (Oxford), 34(7), 641–678. https://doi.org/10.1016/j.progpolymsci.2009.04.001spa
dc.relation.referencesRout, S. K. (2001). Physicochemical, functional, and spectroscopic analysis of crawfish chitin and chitosan as affected by process modification, 1–161.spa
dc.relation.referencesRujitanaroj, P. on, Pimpha, N., & Supaphol, P. (2008). Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer, 49(21), 4723–4732. https://doi.org/10.1016/j.polymer.2008.08.021spa
dc.relation.referencesSilva Vasco, J. D. D. (Tecnico L. (2013). Preparation and characterization of chitosan nanoparticles for gene delivery. Tecnico Lisboa.spa
dc.relation.referencesTermnak, S., Triampo, W., & Triampo, D. (2009). Effect of acid during synthesis on the agglomerated strength of TiO 2 nanoparticles. Journal of Ceramic Processing Research, 10(4), 491–496spa
dc.relation.referencesUeno, H. (2001). Topical formulations and wound healing applications of chitosan 2 . Topical findings of healing with chitosan at early phase of experimental open skin wound. Advanced Drug Delivery Reviews, 52, 105–115.spa
dc.relation.referencesVikele, L., Laka, M., Sable, I., Rozenberga, L., Grinfelds, U., Zoldners, J., … Lv, L. (2017). Effect of Chitosan on Properties of Paper for Packaging. CELLULOSE CHEMISTRY AND TECHNOLOGY Cellulose Chem. Technol, 51(12), 67–73. https://doi.org/10.5897/JCEMS2015.0235spa
dc.relation.referencesWeltrowski, M., Martel, B., & Morcellet, M. (1996). Chitosan N-benzyl sulfonate derivatives as sorbents for removal of metal ions in an acidic medium. Journal of Applied Polymer Science, 59(4), 647–654. https://doi.org/10.1002/(SICI)1097- 4628(19960124)59:4<647::AID-APP10>3.0.CO;2-Nspa
dc.relation.referencesWu, K. T., & Spencer, H. G. (1998). Sol formation rates in acid catalyzed titanium isopropoxide water reaction in isopropanol. Journal of Non-Crystalline Solids, 226(3), 249–255. https://doi.org/10.1016/S0022-3093(98)00441-4spa
dc.relation.referencesYan, X. (National U. os S., Khor, E. (National U. os S., & Lim, L.-Y. (National U. os S. (2000). PEC Films Prepared from Chitosan-Alginate Coacervates. Chemical & Pharmaceutical Bulletin, 48(7), 941–946spa
dc.relation.referencesZahoorullah, S., Dakshayani, L., Rani, a, & Venkateswerlu, G. (2017). Effect of Chitosan Coating on the Physicochemical Characteristics of Brinjal Quality during Storage. Journal of Advances in Biology & Biotechnology, 13(3), 1–9. https://doi.org/10.9734/JABB/2017/34733spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalQuitosano,
dc.subject.proposalDióxido de titanio
dc.subject.proposalVanadio
dc.subject.proposalMateriales compuestos
dc.subject.proposalBiodegradable
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ingenieríaspa
dc.description.researchareaMateriales poliméricos, cerámicos y materiales avanzados.spa
dc.publisher.facultyPosgradospa
dc.publisher.programMagíster en Ingeniero enspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem