Mostrar el registro sencillo del ítem

dc.contributor.advisorArdila, Luis Carlos
dc.contributor.authorEstupiñán Minguí, Fredy Antonio
dc.date.accessioned2021-03-01T15:45:31Z
dc.date.available2021-03-01T15:45:31Z
dc.date.issued2020-11-23
dc.identifier.urihttps://repositorio.ecci.edu.co/handle/001/886
dc.description.abstractEn el presente trabajo de grado se estudió el efecto de la adición de silicio en el recubrimiento TiAlCrN a partir de la caracterización microestructural, propiedades mecánicas y desgaste de este depositado sobre sustrato de metal duro K20. Para la obtención de estas películas delgadas se empleó la técnica de deposición en fase vapor (PVD) con magnetrón desbalanceado (cosputtering), utilizando el equipo propiedad de la Universidad Nacional de Colombia sede Bogotá, que cuenta con dos magnetrones y dos fuentes, una de corriente alterna y otra con corriente continua. Las técnicas de caracterización empleadas durante este trabajo incluyen la microscopia electrónica de barrido (SEM), espectrometría dispersión de energía de rayos X (EDS) y difracción de rayos X (XRD), así como también la técnica de nanoindentación para medidas de dureza y un equipo de desgaste según la norma ASTM B611. Para estos últimos se adecuo mecánica y electrónicamente la máquina de ensayos de norma ASTM G65 existente en la Universidad ECCI, garantizando repetitividad en los ensayos en cada una de las dos normas. Asimismo, se modificó el equipo teniendo el análisis de películas delgadas, razón por la cual se modifica el peso de la masa por un valor de 1000 g con dimensiones de Ø127mm por una longitud de 10mm, obteniendo así una fuerza sobre la probeta de 37.2N. En cuanto al depósito, la variación en los parámetros llevó a obtener las mayores durezas con 170 V en la fuente RF del blanco de cromo y 270 V para la fuente DC del blanco de TiAl donde se dispusieron las piezas de silicio y una temperatura de 270 °C. A nivel microestructural se evidenció que la adición de silicio provocó aumento en el parámetro de red, disminución del tamaño de cristalito y aumento en dureza y módulo elásticos que son razonables debido a la incorporación de silicio en la red del TiAlCrN. El efecto del silicio sobre las propiedades antes descritas está asociado a la ley de Hall Petch debida al afino de grano; no obstante, en los recubrimientos dicha ley es aplicable siempre que se considere una fase matriz suficientemente dura sumado a intercaras finas que no produzcan ablandamiento. Sin embargo, es necesario evidenciar esto mediante microscopia electrónica de transmisión. Existe otra teoría, que en función de los resultados de este trabajo de grado cobra más validez y es la que relaciona el incremento en la dureza debido al refinamiento microestructural que produce el bloqueo de las bandas de deslizamiento por los límites de grano. El comportamiento a desgaste es otra propiedad importante a la hora de analizar la integridad de los recubrimientos y sustratos. En primer lugar, con el equipo de desgaste modificado para la norma ASTM B611 se realizaron medidas y validaciones de este a partir de ensayos sobre el sustrato (metal duro K20) las cuales mostraron alta reproducibilidad con promedio de pérdida de masa de 0.7826 g y varianza de 0.0857. Esto indica que el proceso es robusto viéndose poco afectado por factores externos de ruido. En segundo lugar, se realizaron medidas sobre el recubrimiento bajo las condiciones antes mencionadas. Los resultados de estas medidas muestran una relación directa entre la dureza, el módulo elástico y el desgaste. En este sentido, y como ya se discutió, el silicio genera reducción en el tamaño de cristalito aumentando la dureza y módulo elástico, provocando menores pérdidas de masa y volumen de material. Esto se demostró lo estableciendo las relaciones H/E y H3/E2 en donde su aumento está bien correlacionado con un mejor desempeño de estos materiales frente la resistencia al desgaste
dc.description.tableofcontentsTABLA DE CONTENIDO 1. INTRODUCCIÓN 10 2. PROBLEMA DE INVESTIGACIÓN 13 2.1 DESCRIPCIÓN DEL PROBLEMA 13 2.2 FORMULACIÓN DEL PROBLEMA 13 3. OBJETIVOS 14 3.1 OBJETIVO GENERAL 14 3.2 OBJETIVOS ESPECÍFICOS 14 4. FUNDAMENTOS TEÓRICOS 15 4.1 SUSTRATO METAL DURO ISO K20 15 4.2 CONCEPTO Y ESPECIFICACIONES DE LOS RECUBRIMIENTOS 18 4.3 PULVERIZACIÓN CATODICA “SPUTTERING” 19 4.3.1 MÉTODOS DE DEPOSICIÓN EMPLEANDO PULVERIZACIÓN CATÓDICA 20 4.3.1.1 DC Sputtering por Diodo (Planar) 20 4.3.1.2 DC Magnetron Sputtering 20 4.3.1.3 DC Magnetron Sputtering Unbalanced 21 4.3.1.4 DC Magnetron Sputtering Pulsed 21 4.3.1.5 Sputtering RF 21 4.3.1.6 Sputtering AC 22 4.3.2 SPUTTERING REACTIVO 22 4.3.3 VARIABLES DURANTE EL PROCESO DE SPUTTERING 23 4.3.3.1 Temperatura 23 4.3.3.2 Potencia 23 4.3.3.3 Presión 24 4.3.3.4 Voltaje de Polarización 24 4.3.4 CRECIMIENTO DE PELÍCULAS POR SPUTTERING 25 4.3.4.1 Condensación y Nucleación 25 4.3.4.2 Crecimiento de Núcleos 26 4.3.4.3 Formación de Interface 27 4.3.4.4 Crecimiento de Recubrimientos 27 4.4 RECUBRIMIENTOS BASADOS EN NITRUROS 28 4.4.1 NITRURO DE TITANIO (TiN) 28 4.4.2 NITRURO DE CROMO (CrN) 29 4.4.3 NITRURO DE ALUMINIO TITANIO (AlTiN) 30 4.4.4 NITRURO DE TITANIO SILICIO (TiSiN) 31 4.4.5 NITRURO DE ALUMINIO CROMO (AlCrN) 32 4.4.6 NITRURO DE CROMO TITANIO ALUMINIO SILICIO (CrTiAlSiN) 33 5. TÉCNICAS DE CARACTERIZACIÓN 35 5.1 MICROSCOPÍA ELECTRÓNICA DE BARRIDO (SEM) 35 5.2 ESPECTROMETRÍA DISPERSIÓN DE ENERGÍA DE RAYOS X (EDS) 37 5.3 DIFRACCIÓN DE RAYOS X (XRD) 38 5.4 DUREZA – NANOINDENTACIÓN 39 5.5 ENSAYOS DE DESGASTE (ASTM B611) 41 6. RESULTADOS Y DISCUSIÓN 42 6.1 DEPÓSITO DE RECUBRIMIENTOS 42 6.2 MICROSCOPÍA ELECTRÓNICA DE BARRIDO (SEM) Y ESPECTROMETRÍA DISPERSIÓN DE ENERGÍA DE RAYOS X (EDS) 44 6.3 DIFRACCIÓN DE RAYOS X (XRD) 47 6.4 DUREZA 49 6.5 ENSAYOS DE DESGASTE (ASTM B611) 51 6.5.1 PUESTA A PUNTO MÁQUINA ENSAYOS ASTM B611 51 6.5.2 PREPARACIÓN DEL COMPONENTE ABRASIVO PARA ASTM B611 58 6.5.3 PREPARACIÓN DE LAS PROBETAS PARA ASTM B611 59 6.5.4 RESULTADOS ENSAYOS DESGASTE EN PROBETAS K20. 60 6.5.5 RESULTADOS ENSAYOS DESGASTE EN RECUBRIMIENTOS 62 7. CONCLUSIONES Y RECOMENDACIONES 69 8. BIBLIOGRAFIA 71
dc.format.extent77 p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsDerechos Reservados - Universidad ECCI, 2020
dc.titleCaracterización Microestructural del Recubrimiento CrTiAlSiN Depositado Sobre Metal Duro K20 Mediante Sistema de Cosputtering.
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.colaboratorUniversidad ECCIspa
dc.relation.referencesQ. Yang, L. R. Zhao, F. Cai, S. Yang, and D. G. Teer, “Wear, erosion and corrosion resistance of CrTiAlN coating deposited by magnetron sputtering,” Surf. Coatings Technol., vol. 202, no. 16, pp. 3886–3892, 2008, doi: 10.1016/j.surfcoat.2008.01.029.spa
dc.relation.referencesX. Sui et al., “Improved toughness of layered architecture TiAlN/CrN coatings for titanium high speed cutting,” Ceram. Int., vol. 44, no. 5, pp. 5629–5635, 2018, doi: 10.1016/j.ceramint.2017.12.210.spa
dc.relation.referencesW. Yang et al., “Structure and properties of PVD TiAlN and TiAlN/CrAlN coated Ti(C, N)- based cermets,” Ceram. Int., vol. 43, no. 2, pp. 1911–1915, 2017, doi: 10.1016/j.ceramint.2016.10.151.spa
dc.relation.referencesD. A. Golosov, “Balanced magnetic field in magnetron sputtering systems,” Vacuum, vol. 139, pp. 109–116, 2017, doi: 10.1016/j.vacuum.2017.02.018.spa
dc.relation.referencesS. Zhang, D. Li, J. Yoon, and T. Cho, “Synthesis and evaluation of TiN-WC/TiN nanocomposite by the hybrid technique with arc ion plating and magnetron sputtering,” Curr. Appl. Phys., vol. 10, no. 3, pp. 842–847, 2010, doi: 10.1016/j.cap.2009.10.005.spa
dc.relation.referencesM. Panjan, S. Šturm, P. Panjan, and M. Čekada, “TEM investigation of TiAlN/CrN multilayer coatings prepared by magnetron sputtering,” Surf. Coatings Technol., vol. 202, no. 4–7, pp. 815–819, 2007, doi: 10.1016/j.surfcoat.2007.05.084.spa
dc.relation.referencesG. E. D’Errico, R. Chiara, and E. Guglielmi, “PVD coatings of cermet inserts for milling applications,” Surf. Coatings Technol., vol. 86–87, no. PART 2, pp. 735–738, 1996, doi: 10.1016/S0257-8972(96)03060-5.spa
dc.relation.referencesM. Jílek, M. Jílek, F. Mendez Martin, P. H. Mayrhofer, and S. Veprek, “High-rate deposition of AlTiN and related coatings with dense morphology by central cylindrical direct current magnetron sputtering,” Thin Solid Films, vol. 556, pp. 361–368, 2014, doi: 10.1016/j.tsf.2014.01.059.spa
dc.relation.referencesD. Yu, C. Wang, X. Cheng, and F. Zhang, “Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology,” Thin Solid Films, vol. 517, no. 17, pp. 4950–4955, 2009, doi: 10.1016/j.tsf.2009.03.091.spa
dc.relation.referencesM. Gong, J. Chen, X. Deng, and S. Wu, “Sliding wear behavior of TiAlN and AlCrN coatings on a unique cemented carbide substrate,” Int. J. Refract. Met. Hard Mater., vol. 69, no. August, pp. 209–214, 2017, doi: 10.1016/j.ijrmhm.2017.08.003.spa
dc.relation.referencesW. Tillmann and M. Dildrop, “Influence of Si content on mechanical and tribological properties of TiAlSiN PVD coatings at elevated temperatures,” Surf. Coatings Technol., vol. 321, pp. 448–454, 2017, doi: 10.1016/j.surfcoat.2017.05.014.spa
dc.relation.referencesU. S. Ceratizit, “Technical Reference Book,” 2017.spa
dc.relation.referencesG. S. Upadhyaya, “5 - Sintering Behavior of Cemented Carbides,” in Cemented Tungsten 72 Carbides, G. S. Upadhyaya, Ed. Westwood, NJ: William Andrew Publishing, 1998, pp. 138– 165.spa
dc.relation.referencesG. S. Upadhyaya, “6 - Microstructural Aspects of Cemented Carbides,” in Cemented Tungsten Carbides, G. S. Upadhyaya, Ed. Westwood, NJ: William Andrew Publishing, 1998, pp. 166–192.spa
dc.relation.referencesG. S. Upadhyaya, “7 - Mechanical Behavior of Cemented Carbides,” in Cemented Tungsten Carbides, G. S. Upadhyaya, Ed. Westwood, NJ: William Andrew Publishing, 1998, pp. 193– 226.spa
dc.relation.references“Materiales de las piezas,” 2020. .spa
dc.relation.referencesG. S. Upadhyaya, “14 - Classification and Applications of Cemented Carbides,” in Cemented Tungsten Carbides, G. S. Upadhyaya, Ed. Westwood, NJ: William Andrew Publishing, 1998, pp. 288–308.spa
dc.relation.referencesN. E. Woldman and J. P. Frick, Woldman’s Engineering Alloys. ASM International, 2000.spa
dc.relation.referencesA. Cavaleiro and J. T. de Hosson, Nanostructured Coatings. Springer New York, 2007.spa
dc.relation.referencesD. M. M. Mattox, HANDBOOK OF PHYSICAL VAPOR DEPOSITION ( PVD ) PROCESSING Film Formation , Adhesion , Surface Preparation and Contamination Control. 1998.spa
dc.relation.referencesA. . Fallis, Hand Book of Printed Electronics Depositions, vol. 53, no. 9. 2013.spa
dc.relation.referencesS. L. Scott, C. M. Crudden, and C. . Jones, Nanostructured Catalysts (Nanostructure Science and Technology). 2003.spa
dc.relation.referencesJ. M. A. Mart\’\in, Láminas delgadas y recubrimientos: Preparación, propiedades y aplicaciones. Consejo Superior de Investigaciones Cientificas, 2003.spa
dc.relation.referencesJ. Sarkar, “Chapter 2 - Sputtering and Thin Film Deposition,” in Sputtering Materials for VLSI and Thin Film Devices, J. Sarkar, Ed. Boston: William Andrew Publishing, 2014, pp. 93–170spa
dc.relation.referencesR. V STUART, “CHAPTER IV - SPUTTERING,” in Vacuum Technology, Thin Films, and Sputtering, R. V STUART, Ed. San Diego: Academic Press, 2003, pp. 91–135.spa
dc.relation.referencesC. Mitterer, P. H. Mayrhofer, and J. Musil, “Thermal stability of PVD hard coatings,” User Model. User-adapt. Interact., vol. 71, no. 1-2 SPEC., pp. 279–284, 2003, doi: 10.1016/S0042-207X(02)00751-0.spa
dc.relation.referencesD. Depla, “On the effective sputter yield during magnetron sputter deposition,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 328, pp. 65– 69, 2014, doi: https://doi.org/10.1016/j.nimb.2014.03.001.spa
dc.relation.referencesY. L. Chipatecua, W. Hernández, and J. J. Olaya, Multicapas nanométricas producidas por PVD. Tecnolog{\’\i}a eficiente y ambientalmente limpia. Universidad Nacional de Colombia, 2013.spa
dc.relation.referencesG. Greczynski et al., “A review of metal-ion-flux-controlled growth of metastable TiAlN by HIPIMS/DCMS co-sputtering,” Surf. Coatings Technol., vol. 257, pp. 15–25, 2014, doi: 10.1016/j.surfcoat.2014.01.055.spa
dc.relation.referencesK. Shukla, R. Rane, J. Alphonsa, P. Maity, and S. Mukherjee, “Structural, mechanical and 73 corrosion resistance properties of Ti/TiN bilayers deposited by magnetron sputtering on AISI 316L,” Surf. Coatings Technol., vol. 324, pp. 167–174, 2017, doi: 10.1016/j.surfcoat.2017.05.075.spa
dc.relation.referencesX. Zhang, K. Cooke, P. Carmichael, and I. P. Parkin, “The deposition of crystallized TiO2coatings by closed field unbalanced magnetron sputter ion plating,” Surf. Coatings Technol., vol. 236, pp. 290–295, 2013, doi: 10.1016/j.surfcoat.2013.10.002.spa
dc.relation.referencesD. Depla and S. Mahieu, Reactive Sputter Deposition. Springer Berlin Heidelberg, 2008.spa
dc.relation.referencesK. Wasa, I. Kanno, and H. Kotera, Handbook of Sputter Deposition Technology: Fundamentals and Applications for Functional Thin Films, Nano-Materials and MEMS. Elsevier Science, 2012spa
dc.relation.referencesA. Kulkarni, V. Sargade, and C. More, “Machinability Investigation of AISI 304 Austenitic Stainless Steels using Multilayer AlTiN/TiAlN Coated Carbide Inserts,” Procedia Manuf., vol. 20, pp. 548–553, 2018, doi: 10.1016/j.promfg.2018.02.082.spa
dc.relation.referencesF. Changjie and C. En, “Effects of Substrate Temperature on Microstructure and Tribological Properties of Ti-Al-Si-Cu-N Films Deposited by Magnetron Sputtering,” Rare Met. Mater. Eng., vol. 46, no. 6, pp. 1497–1502, 2017, doi: 10.1016/S1875-5372(17)30153-4.spa
dc.relation.referencesP. Panda et al., “Reduction of residual stress in AlN thin films synthesized by magnetron sputtering technique,” Mater. Chem. Phys., vol. 200, pp. 78–84, 2017, doi: 10.1016/j.matchemphys.2017.07.072.spa
dc.relation.referencesM. A. Domínguez-Crespo et al., “Effect of deposition parameters on structural, mechanical and electrochemical properties in Ti/TiN thin films on AISI 316L substrates produced by r. f. magnetron sputtering,” J. Alloys Compd., vol. 746, pp. 688–698, 2018, doi: 10.1016/j.jallcom.2018.02.319.spa
dc.relation.referencesK. A. Lozovoy, A. G. Korotaev, A. P. Kokhanenko, V. V Dirko, and A. V Voitsekhovskii, “Kinetics of epitaxial formation of nanostructures by Frank–van der Merwe, Volmer–Weber and Stranski–Krastanow growth modes,” Surf. Coatings Technol., vol. 384, p. 125289, 2020, doi: https://doi.org/10.1016/j.surfcoat.2019.125289.spa
dc.relation.referencesS. Vepřek and S. Reiprich, “A concept for the design of novel superhard coatings,” Thin Solid Films, vol. 268, no. 1–2, pp. 64–71, 1995, doi: 10.1016/0040-6090(95)06695-0.spa
dc.relation.referencesA. Z. Ait-Djafer, N. Saoula, H. Aknouche, B. Guedouar, and N. Madaoui, “Deposition and characterization of titanium aluminum nitride coatings prepared by RF magnetron sputtering,” Appl. Surf. Sci., vol. 350, pp. 6–9, 2015, doi: 10.1016/j.apsusc.2015.02.053.spa
dc.relation.referencesY. Xi et al., “Film thickness effect on texture and residual stress sign transition in sputtered TiN thin films,” Ceram. Int., vol. 43, no. 15, pp. 11992–11997, 2017, doi: 10.1016/j.ceramint.2017.06.050.spa
dc.relation.references“Voestalpine - Eifeler,” 2020. .spa
dc.relation.references“MatWeb - Material Property Data,” 2020spa
dc.relation.referencesH. O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps. Elsevier Science, 2013.spa
dc.relation.referencesC. F. Wang, S. F. Ou, and S. Y. Chiou, “Microstructures of TiN, TiAlN and TiAlVN coatings on AISI M2 steel deposited by magnetron reactive sputtering,” Oral Oncol., vol. 50, no. 10, pp. 2559–2565, 2014, doi: 10.1016/S1003-6326(14)63383-5spa
dc.relation.referencesM. S. Kabir, P. Munroe, Z. Zhou, and Z. Xie, “Structure and mechanical properties of graded Cr/CrN/CrTiN coatings synthesized by close field unbalanced magnetron sputtering,” Surf. Coatings Technol., vol. 309, pp. 779–789, 2016, doi: 10.1016/j.surfcoat.2016.10.087.spa
dc.relation.referencesT. Wang, G. Zhang, and B. Jiang, “Comparison in mechanical and tribological properties of CrTiAlMoN and CrTiAlN nano-multilayer coatings deposited by magnetron sputtering,” Appl. Surf. Sci., vol. 363, pp. 217–224, 2016, doi: 10.1016/j.apsusc.2015.12.005.spa
dc.relation.referencesY. X. Ou, J. Lin, S. Tong, W. D. Sproul, and M. K. Lei, “Structure, adhesion and corrosion behavior of CrN/TiN superlattice coatings deposited by the combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering,” Surf. Coatings Technol., vol. 293, pp. 21–27, 2016, doi: 10.1016/j.surfcoat.2015.10.009.spa
dc.relation.references“Sadosa S.A. de C.V.,” 2020spa
dc.relation.referencesM. Keunecke, C. Stein, K. Bewilogua, W. Koelker, D. Kassel, and H. van den Berg, “Modified TiAlN coatings prepared by d.c. pulsed magnetron sputtering,” Surf. Coatings Technol., vol. 205, no. 5, pp. 1273–1278, 2010, doi: 10.1016/j.surfcoat.2010.09.023.spa
dc.relation.references“Metallurgical Coating Services & Surface Engineering,” 2020. .spa
dc.relation.referencesH. C. Barshilia, K. Yogesh, and K. S. Rajam, “Deposition of TiAlN coatings using reactive bipolar-pulsed direct current unbalanced magnetron sputtering,” Vacuum, vol. 83, no. 2, pp. 427–434, 2008, doi: 10.1016/j.vacuum.2008.04.075spa
dc.relation.referencesW. Liu et al., “Preparation and properties of TiAlN coatings on silicon nitride ceramic cutting tools,” Ceram. Int., vol. 44, no. 2, pp. 2209–2215, 2018, doi: 10.1016/j.ceramint.2017.10.177.spa
dc.relation.referencesW. Zhou, J. Liang, F. Zhang, J. Mu, and H. Zhao, “A comparative research on TiAlN coatings reactively sputtered from powder and from smelting TiAl targets at various nitrogen flow rates,” Appl. Surf. Sci., vol. 313, pp. 10–18, 2014, doi: 10.1016/j.apsusc.2014.05.053.spa
dc.relation.referencesM. Arab Pour Yazdi et al., “Properties of TiSiN coatings deposited by hybrid HiPIMS and pulsed-DC magnetron co-sputtering,” Vacuum, vol. 109, pp. 43–51, 2014, doi: 10.1016/j.vacuum.2014.06.023.spa
dc.relation.referencesA. Miletić, P. Panjan, B. Škorić, M. Čekada, G. Dražič, and J. Kovač, “Microstructure and mechanical properties of nanostructured Ti-Al-Si-N coatings deposited by magnetron sputtering,” Surf. Coatings Technol., vol. 241, pp. 105–111, 2014, doi: 10.1016/j.surfcoat.2013.10.050.spa
dc.relation.referencesW. Wu et al., “Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools,” Appl. Surf. Sci., vol. 351, pp. 803–810, 2015, doi: 10.1016/j.apsusc.2015.05.191.spa
dc.relation.referencesS. K. Kim, P. Van Vinh, and J. W. Lee, “Deposition of superhard nanolayered TiCrAlSiN thin films by cathodic arc plasma deposition,” Surf. Coatings Technol., vol. 202, no. 22–23, pp. 5395–5399, 2008, doi: 10.1016/j.surfcoat.2008.06.020.spa
dc.relation.referencesY. J. Hwang et al., “Influence of silicon content on microstructure and mechanical 75 properties of Ti-Cr-Si alloys,” J. Alloys Compd., vol. 737, pp. 53–57, 2018, doi: 10.1016/j.jallcom.2017.12.048.spa
dc.relation.referencesS. Siwawut, C. Saikaew, A. Wisitsoraat, and S. Surinphong, “Cutting performances and wear characteristics of WC inserts coated with TiAlSiN and CrTiAlSiN by filtered cathodic arc in dry face milling of cast iron,” Int. J. Adv. Manuf. Technol., vol. 97, no. 9–12, pp. 3883–3892, 2018, doi: 10.1007/s00170-018-2200-x.spa
dc.relation.referencesY. Y. Chang and C. Y. Hsiao, “High temperature oxidation resistance of multicomponent CrTi-Al-Si-N coatings,” Surf. Coatings Technol., vol. 204, no. 6–7, pp. 992–996, 2009, doi: 10.1016/j.surfcoat.2009.04.009.spa
dc.relation.references] J. Kuo, Electron Microscopy: Methods and Protocols. Humana Press, 2007.spa
dc.relation.referencesP. W. Hawkes and L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. Springer Berlin Heidelberg, 2013.spa
dc.relation.referencesP. Echlin, Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis. Springer US, 2011.spa
dc.relation.referencesJ. C. Russ, M. A. Frs, R. Kiessling, and J. Charles, Fundamentals of Energy Dispersive X-Ray Analysis: Butterworths Monographs in Materials. Elsevier Science, 2013.spa
dc.relation.referencesK. Wasa, M. Kitabatake, and H. Adachi, Thin Film Materials Technology: Sputtering of Compound Materials. Elsevier Science, 2004.spa
dc.relation.referencesK. Shih, X-Ray Diffraction: Structure, Principles and Applications. Nova Science Publishers, Incorporated, 2013.spa
dc.relation.referencesM. Lee, X-Ray Diffraction for Materials Research: From Fundamentals to Applications. Apple Academic Press, 2017.spa
dc.relation.referencesM. Containing, L. Than, T. Percent, and A. Tests, “Standard Test Method for Determining the High Stress Abrasion Resistance of Hard,” pp. 1–6, 2017, doi: 10.1520/B0611-13.2.spa
dc.relation.referencesC. Zhang, H. Cao, D. Han, S. Qiao, and Y. Guo, “Influence of a TiAlN coating on the mechanical properties of a heat resistant steel at room temperature and 650 C,” J. Wuhan Univ. Technol. Mater. Sci. Ed., vol. 28, no. 5, pp. 1029–1033, 2013, doi: 10.1007/s11595- 013-0813-3.spa
dc.relation.referencesM. Kawate, A. Kimura, and T. Suzuki, “Microhardness and lattice parameter of Cr1−xAlxN films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 20, no. 2, pp. 569–571, 2002, doi: 10.1116/1.1448510.spa
dc.relation.referencesJ.-P. Rivière, “Nanostructured Coatings,” in Nanomaterials and Nanochemistry, C. Bréchignac, P. Houdy, and M. Lahmani, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 529–547.spa
dc.relation.referencesS. Veprek and M. G. J. Veprek-Heijman, “Limits to the preparation of superhard nanocomposites: Impurities, deposition and annealing temperature,” Thin Solid Films, vol. 522, pp. 274–282, 2012, doi: 10.1016/j.tsf.2012.08.048spa
dc.relation.referencesP. Hones, R. Sanjinés, and F. Lévy, “Sputter deposited chromium nitride based ternary compounds for hard coatings,” Thin Solid Films, vol. 332, no. 1–2, pp. 240–246, 1998, doi: 76 10.1016/S0040-6090(98)00992-4.spa
dc.relation.referencesP. C. Wo et al., “Factors governing the mechanical behaviour of CrSiN coatings: Combined nanoindentation testing and transmission electron microscopy,” Mater. Sci. Eng. A, vol. 534, pp. 297–308, 2012, doi: 10.1016/j.msea.2011.11.072.spa
dc.relation.referencesF. Huang, F. Ge, P. Zhu, H. Wang, F. Meng, and S. Li, “Superhard V-Si-N coatings (>50GPa) with the cell-like nanostructure prepared by magnetron sputtering,” Surf. Coatings Technol., vol. 232, pp. 600–605, 2013, doi: 10.1016/j.surfcoat.2013.06.035.spa
dc.relation.referencesX. Chu and S. A. Barnett, “Model of superlattice yield stress and hardness enhancements,” J. Appl. Phys., vol. 77, no. 9, pp. 4403–4411, 1995, doi: 10.1063/1.359467.spa
dc.relation.referencesS. Vepřek, M. Haussmann, S. Reiprich, L. Shizhi, and J. Dian, “Novel thermodynamically stable and oxidation resistant superhard coating materials,” Surf. Coatings Technol., vol. 86–87, no. PART 1, pp. 394–401, 1996, doi: 10.1016/S0257-8972(96)02988-X.spa
dc.relation.referencesM. Parchovianský et al., “Mechanical properties and sliding wear behaviour of Al2O3-SiC nanocomposites with 3–20 vol% SiC,” J. Eur. Ceram. Soc., vol. 37, no. 14, pp. 4297–4306, 2017, doi: 10.1016/j.jeurceramsoc.2017.04.051.spa
dc.relation.referencesC. A. Harper and E. M. Petrie, Plastics Materials and Processes: A Concise Encyclopedia. Wiley, 2003.spa
dc.relation.referencesH. Liao, B. Normand, and C. Coddet, “Influence of coating microstructure on the abrasive wear resistance of WC/Co cermet coatings,” Surf. Coatings Technol., vol. 124, no. 2–3, pp. 235–242, Feb. 2000, doi: 10.1016/S0257-8972(99)00653-2.spa
dc.relation.referencesM. Kašparová, F. Zahálka, and Š. Houdková, “WC-Co and Cr 3C 2-NiCr coatings in low- and high-stress abrasive conditions,” Journal of Thermal Spray Technology, vol. 20, no. 3. pp. 412–424, Mar. 19, 2011, doi: 10.1007/s11666-010-9523-y.spa
dc.relation.referencesY. Xie and H. M. Hawthorne, “A model for compressive coating stresses in the scratch adhesion test,” Surf. Coatings Technol., vol. 141, no. 1, pp. 15–25, 2001, doi: 10.1016/S0257-8972(01)01130-6spa
dc.relation.referencesX. Pang, K. Gao, F. Luo, Y. Emirov, A. A. Levin, and A. A. Volinsky, “Investigation of microstructure and mechanical properties of multi-layer Cr/Cr2O3 coatings,” Thin Solid Films, vol. 517, no. 6, pp. 1922–1927, 2009, doi: 10.1016/j.tsf.2008.10.026.spa
dc.relation.referencesL. A. Dobrzański, S. Skrzypek, D. Pakuła, J. Mikuła, and A. Křiž, “Influence of the PVD and CVD technologies on the residual macro- stresses and functional properties of the coated tool ceramics Manufacturing and processing Manufacturing and processing,” vol. 35, no. 2, pp. 162–168, 2009.spa
dc.relation.referencesM. Hagarová, “Experimental Methods of Assessment of PVD Coatings Properties,” vol. 17, no. 2, pp. 29–35, 2007spa
dc.relation.referencesJ. Gurland, “New scientific approaches to development of tool materials,” Int. Mater. Rev., vol. 33, no. 1, pp. 151–166, 1988, doi: 10.1179/imr.1988.33.1.151.spa
dc.relation.referencesJ. García, V. Collado Ciprés, A. Blomqvist, and B. Kaplan, “Cemented carbide microstructures: a review,” Int. J. Refract. Met. Hard Mater., vol. 80, pp. 40–68, 2019, doi: 10.1016/j.ijrmhm.2018.12.004.spa
dc.relation.referencesD. Philippon, V. Godinho, P. M. Nagy, M. P. Delplancke-Ogletree, and A. Fernández, “Endurance of TiAlSiN coatings: Effect of Si and bias on wear and adhesion,” Wear, vol. 270, no. 7–8, pp. 541–549, 2011, doi: 10.1016/j.wear.2011.01.009.spa
dc.relation.referencesA. Leyland and A. Matthews, “On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour,” Wear, vol. 246, no. 1–2, pp. 1–11, 2000, doi: 10.1016/S0043-1648(00)00488-9.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalCaracterización Microestructural
dc.subject.proposalPropiedades mecánicas
dc.subject.proposalMetal Duro K20
dc.subject.proposalRecubrimiento CrTiAlSiN
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ingenieríaspa
dc.publisher.facultyPosgradospa
dc.publisher.programMagíster en Ingeniero enspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem