Publicación: Desarrollo e implementación de algoritmos basados en dinámica molecular para la simulación y análisis de datos de electrodos de superficie circulares para la obtención y comparación de su electrostática
dc.contributor.advisor | Salazar Romero, Robert Paul | |
dc.contributor.author | Cobos Sarta, Cristian David | |
dc.date.accessioned | 2024-04-17T13:14:42Z | |
dc.date.available | 2024-04-17T13:14:42Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Se han desarrollado y aplicado algoritmos basados en dinámica molecular (MD) para simular electrodos de superficies circulares, separados por un gap. Estos algoritmos también incluyen herramientas de análisis de datos para obtener y comparar la electrostática del sistema. Las partículas interactúan a través del potencial eléctrico tipo Coulomb y de interacciones de corto alcance (choques elásticos). Se emplea un ensamble canónico, lo que requiere algoritmos de control de temperatura (termostatos) para ajustar la energía cinética media del sistema y así influir en la temperatura. La evaluación del rendimiento de los algoritmos se realiza comparando los resultados de MD con soluciones analíticas y numéricas obtenidas mediante el método de momentos (MoM). Se encontró que los termostatos de reescalamiento de velocidades y Andersen presentan dificultades para reproducir la electrostática, debido a problemas como el aumento del momento angular del sistema y la asignación aleatoria de velocidades, que conducen a un comportamiento no realista al minimizar el efecto de las interacciones de largo alcance. El termostato de Nosé-Hoover puede reproducir la electrostática con ajustes adecuados, pero también sufre del problema de aumento del momento angular, lo que puede generar configuraciones no electrostáticas. Por otro lado, el termostato de Langevin logra recrear satisfactoriamente la electrostática al forzar una distribución adecuada de velocidades y mantener el momento angular promedio cerca de cero, evitando así configuraciones no deseadas. Las comparaciones con el método de momentos muestran una buena concordancia, especialmente en casos como el gapless. Esto indica una fiabilidad en los algoritmos desarrollados. Además, se exploraron sistemas con un número reducido de partículas, mostrando que, a pesar de efectos de talla finita, la dinámica molecular sigue oscilando alrededor de las soluciones del método de momentos, lo que sugiere su capacidad para reproducir la electrostática de manera confiable en ensambles canónicos de electrodos de superficie circulares. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero en Electrónica | spa |
dc.description.program | Ingeniería Electrónica | spa |
dc.format.extent | 69 p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.ecci.edu.co/handle/001/4007 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad ECCI | spa |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.publisher.place | Colombia | spa |
dc.relation.references | R. Salazar Romero, C. Bayona, and G. T´ellez, “Monte carlo simulations of twocomponent coulomb gases applied in surface electrodes,” Journal of Physics: Condensed Matter, vol. 34, 01 2022. | spa |
dc.relation.references | R. K. Pathria, Statistical mechanics. Elsevier, 2016. | spa |
dc.relation.references | N. Davidson, Statistical mechanics. Courier Corporation, 2013. | spa |
dc.relation.references | L. Samaj and I. Travˇenec, “Thermodynamic properties of the two-dimensional two- ˇ component plasma,” Journal of Statistical Physics, vol. 101, pp. 713–730, 2000. | spa |
dc.relation.references | E. Huigen, A. Peper, and C. Grimbergen, “Investigation into the origin of the noise of surface electrodes,” Medical and biological engineering and computing, vol. 40, pp. 332– 338, 2002. | spa |
dc.relation.references | D. Farina and R. Merletti, “A novel approach for precise simulation of the emg signal detected by surface electrodes,” IEEE transactions on biomedical engineering, vol. 48, no. 6, pp. 637–646, 2001. | spa |
dc.relation.references | D. Hite, Y. Colombe, A. C. Wilson, D. Allcock, D. Leibfried, D. Wineland, and D. Pappas, “Surface science for improved ion traps,” MRS bulletin, vol. 38, no. 10, pp. 826–833, 2013. | spa |
dc.relation.references | I. A. Baratta and C. Andrade, “Installed performance assessment of blade antenna by means of the infinitesimal dipole model,” IEEE Latin America Transactions, vol. 14, no. 2, pp. 569–574, 2016. | spa |
dc.relation.references | D. Raabe, Computational materials science: the simulation of materials microstructures and properties. Wiley-Vch, 1998. | spa |
dc.relation.references | G. Raabe and G. Raabe, “Molecular dynamics simulations,” Molecular Simulation Studies on Thermophysical Properties: With Application to Working Fluids, pp. 83–113, 2017. | spa |
dc.relation.references | K. Zhou and B. Liu, Molecular dynamics simulation: Fundamentals and Applications. Academic Press, 2022. | spa |
dc.relation.references | H. A. L. Filipe and L. M. S. Loura, “Molecular dynamics simulations: Advances and applications,” Molecules, vol. 27, 2022. | spa |
dc.relation.references | K. A. L. Lima and L. A. R. J´unior, “Formation and stability of nanoscrolls composed of graphene and hexagonal boron nitride nanoribbons: insights from molecular dynamics simulations,” Journal of Molecular Modeling, vol. 29, 2023. | spa |
dc.relation.references | A. Pedrielli, M. Dapor, K. Gkagkas, S. Taioli, and N. M. Pugno, “Mechanical properties of twisted carbon nanotube bundles with carbon linkers from molecular dynamics simulations,” International Journal of Molecular Sciences, vol. 24, 2023. | spa |
dc.relation.references | S. Ziaei, B. Rashtbari, J. Azamat, and H. Erfan-Niya, “A comparative study on penetration mechanisms of drug-loaded carbon and boron nitride nanotubes through biological membranes by steered molecular dynamics simulations,” Journal of biomolecular structure & dynamics, pp. 1–13, 2023. | spa |
dc.relation.references | J. Chiaverini, R. B. Blakestad, J. Britton, J. D. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Surface-electrode architecture for ion-trap quantum information processing,” arXiv preprint quant-ph/0501147, 2005. | spa |
dc.relation.references | Q. Turchette, C. Wood, B. King, C. Myatt, D. Leibfried, W. Itano, C. Monroe, and D. Wineland, “Deterministic entanglement of two trapped ions,” Physical Review Letters, vol. 81, no. 17, p. 3631, 1998. | spa |
dc.relation.references | D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature, vol. 417, no. 6890, pp. 709–711, 2002. | spa |
dc.relation.references | B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt, C. Wunderlich, and W. K. Hensinger, “Blueprint for a microwave trapped ion quantum computer,” Science Advances, vol. 3, no. 2, p. e1601540, 2017. | spa |
dc.relation.references | J. S. Manrique, S. M. Martinez, J. E. Vera, and O. R. Gaitan, “Design of a blade dipole antenna for radio astronomy,” in 2022 IEEE ANDESCON, pp. 1–5, IEEE, 2022. | spa |
dc.relation.references | K. Huang, Lectures on statistical physics and protein folding. World Scientific, 2005 | spa |
dc.relation.references | S. R. Turns and L. L. Pauley, Thermodynamics: concepts and applications. Cambridge University Press, 2020 | spa |
dc.relation.references | R. Santamaria, Molecular Dynamics. Springer Nature, 2023. | spa |
dc.relation.references | A. Einstein and D. Raine, Relativity. Routledge, 2013 | spa |
dc.relation.references | M. E. Tuckerman, Statistical mechanics: theory and molecular simulation. Oxford university press, 2023. | spa |
dc.relation.references | W. G. Hoover, Computational statistical mechanics. Elsevier, 2012. | spa |
dc.relation.references | L. B. Loeb, The kinetic theory of gases. Courier Corporation, 2004 | spa |
dc.relation.references | A. Vakhrushev, Molecular Dynamics. BoD–Books on Demand, 2018. | spa |
dc.relation.references | W. C. Gibson, The method of moments in electromagnetics. CRC press, 2021. | spa |
dc.relation.references | ] R. W. Pastor, B. R. Brooks, and A. Szabo, “An analysis of the accuracy of langevin and molecular dynamics algorithms,” Molecular Physics, vol. 65, no. 6, pp. 1409–1419, 1988. | spa |
dc.relation.references | H. C. Andersen, “Molecular dynamics simulations at constant pressure and/or temperature,” The Journal of chemical physics, vol. 72, no. 4, pp. 2384–2393, 1980. | spa |
dc.relation.references | R. Salazar, C. Bayona-Roa, and G. T´ellez, “Electric vector potential formulation in electrostatics: analytical treatment of the gaped surface electrode,” The European Physical Journal Plus, vol. 135, no. 11, p. 878, 2020. | spa |
dc.relation.references | R. Salazar, C. Bayona-Roa, and J. Sol´ıs-Chaves, “Electrostatic field of angulardependent surface electrodes,” The European Physical Journal Plus, vol. 135, no. 1, p. 93, 2020. | spa |
dc.rights | Derechos Reservados - Universidad ECCI, 2024 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.license | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.proposal | Dinámica Molecular | spa |
dc.subject.proposal | Electrostática | spa |
dc.subject.proposal | Electrodo de superficie circular | spa |
dc.subject.proposal | Ensamble canónico | spa |
dc.title | Desarrollo e implementación de algoritmos basados en dinámica molecular para la simulación y análisis de datos de electrodos de superficie circulares para la obtención y comparación de su electrostática | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/updatedVersion | spa |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 10.92 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...

- Nombre:
- Acta de sustentación.pdf
- Tamaño:
- 818.67 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...

- Nombre:
- FR-IN-052 .pdf
- Tamaño:
- 213.08 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
Cargando...

- Nombre:
- license.txt
- Tamaño:
- 14.45 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: