Publicación: Obtención de un motero refractario geopolimérico teniendo como materias primas cenizas de carbón, chamota de ladrillo y residuos arcillosos
dc.contributor.advisor | Orozco Hernández, Giovany | |
dc.contributor.author | Quintero Guzmán, Camilo Andrés | |
dc.date.accessioned | 2023-11-02T14:59:56Z | |
dc.date.available | 2023-11-02T14:59:56Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Se ha desarrollado un mortero geopolimérico teniendo como materias primas de partida cenizas de carbón, chamota de ladrillo y residuos arcillosos, usando como activadores alcalinos una mezcla de silicato de sodio y aluminato de sodio. Las materias primas fueron caracterizadas por fluorescencia de rayos X FRX, difracción de rayos X DRX, análisis termo gravimétrico TGA y térmico diferencial DTA y su morfología fue estudiada por medio de microscopía electrónica de barrido MEB con análisis EDAX teniendo como comparativo un mortero de uso comercial. Los ensayos fueron realizados buscando una relación activadores/precursores que permitan tener una buena manejabilidad, buena fluidez y buena consistencia. Se encontró que usando una relación activador / precursor del 0,81 se obtuvieron estas condiciones. La caracterización de materias primas evidenció que es necesario que la ceniza esté en mayores proporciones para que haya una buena fluidez y para que haya bajas contracciones de secado debe existir una adecuada proporción de chamota y bajas proporciones de residuo arcilloso. Una vez realizada la optimización reológica, se hicieron pruebas de curado a diferentes temperaturas encontrándose que la temperatura óptima de curado es de 70°C. Se realizaron pruebas de resistencia a la compresión y adherencia antes de cocción obteniendo valores muy similares a los encontrados en morteros convencionales y al mortero de referencia. La formulación F14-9 fue sometida a cocción a la temperatura promedio de uso de los hornos ladrilleros (980°C) y se encontró que a esta temperatura la formulación tiene buena adherencia lo que permite concluir que el mortero desarrollado cumple con los requisitos técnicos para ser usado como un producto comercial. Por último, se realizaron pruebas sucesivas de calentamiento y enfriamiento a 980°C encontrándose que después de 11 ciclos el mortero sigue teniendo adherencia mientras que el mortero comercial de referencia a los 6 ciclos empieza a desprenderse. | spa |
dc.description.abstract | A geopolymeric mortar has been developed using coal ash, brick chamotte and clay residues as raw materials, using a mixture of sodium silicate and sodium aluminate as alkaline activators. The raw materials were characterized by X-ray fluorescence XRF, X-ray diffraction XRD, thermo gravimetric analysis TGA and differential thermal analysis DTA and their morphology was studied by scanning electron microscopy SEM with EDAX analysis using a commercial mortar as a comparison. The tests were carried out looking for an activator/precursor ratio that would allow good workability, good flowability and good consistency. It was found that using an activator/precursor ratio of 0.81, good workability, fluidity and consistency conditions were obtained. The characterization of raw materials showed that it is necessary for the ash to be in higher proportions for good fluidity and for there to be low drying contractions there must be an adequate proportion of chamotte and low proportions of clay residue. Once the rheological optimization was performed, curing tests were carried out at different temperatures and the optimum curing temperature was found to be 70°C. Compressive strength and adhesion tests were carried out before firing, obtaining values very similar to those found in conventional mortars and to the reference mortar. The F14-9 formulation was fired at the average temperature of use in brick kilns (980°C) and it was found that at this temperature the formulation has good adherence, which allowed us to conclude that the mortar developed meets the technical requirements to be used as a commercial product. Finally, successive heating and cooling tests were carried out at 980°C and it was found that after 11 cycles the binder still adheres while the commercial reference mortar starts to detach after 6 cycles. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Materiales y Procesos Industriales | spa |
dc.description.program | Maestría en Materiales y Procesos Industriales | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN . 9 2. PALABRAS CLAVE 11 3. PLANTEAMIENTO DEL PROBLEMA 11 4. OBJETIVOS 12 4.1. General 12 4.2 Específicos 12 5. DESARROLLO TEMATICO . 13 5.1. Generalidades. 13 6.1 Activación alcalina, Geopolímeros y Nomenclatura 15 6.1 Materias primas usadas en geopolímeros. 19 6.1 Activadores alcalinos 23 5.5 Geopolímeros con propiedades refractarias . 30 6. METODOLOGÍA 31 6.1 Caracterización de Materias Primas. 32 6.2 Desarrollo de formulaciones preliminares y ajuste de la reología 36 6.3 Pruebas de curado con la temperatura 38 6.4 Evaluación de la resistencia a la compresión mortero curado a 70°C por 24 horas. 38 6.5 Pruebas de adherencia 38 6.6 Evaluación de la morfología del mortero obtenido por microscopía electrónica de barrio39 6.7 Evaluación de desempeño 39 iv 7. RESULTADOS Y DISCUSIÓN . 39 7.1 Análisis químico por FRX 39 7.2 Análisis mineralógico por DRX . 43 7.3 Análisis de distribución de tamaño de partícula por Láser -DTP- . 47 7.4 Análisis Termo gravimétrico y térmico diferencial -ATG – ATD- 53 7.5 Formulaciones preliminares . 56 7.6 Ajuste de la reología del mortero . 64 7.7 Evaluación de la temperatura de fraguado . 68 7.8 Evaluación de la resistencia a la compresión . 73 7.9 Evaluación de la adherencia del mortero a la temperatura de uso de hornos ladrilleros75 7.10 Morfología de materias primas y geopolímero obtenido 79 7.11 Comportamiento preliminar en uso industrial 89 8. CONCLUSIONES Y RECOMENDACIONES 92 9. BIBLIOGRAFÍA | spa |
dc.format.extent | 105 p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.ecci.edu.co/handle/001/3704 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad ECCI | spa |
dc.publisher.faculty | Posgrados | spa |
dc.publisher.place | Colombia | spa |
dc.relation.references | M. Nodehi, V.M. Taghvaee, Alkali-Activated Materials and Geopolymer: a Review of Common Precursors and Activators Addressing Circular Economy, Circ.Econ.Sust. (2021). https://doi.org/10.1007/s43615-021-00029-w. | spa |
dc.relation.references | EELA. Programa de Eficiencia Energética en Ladrilleras de América Latina para Mitigar el Cambio Climático - RED DE LADRILLERAS, (n.d.). http://www.redladrilleras.net/eelaprograma-eficiencia-energetica-ladrilleras-america-latina-mitigar-cambio-climatico/ (accessed October 8, 2020). | spa |
dc.relation.references | Transformación y Perspectivas del Sector Ladrillero en América Latina, Climate & Clean Air Coalition. (n.d.). https://www.ccacoalition.org/en/node/2397 (accessed March 25, 2022) | spa |
dc.relation.references | C. Quintero, INFORME VISITAS A ZONAS LADRILLERAS DE LA REPUBLICA DEL URUGUAY, (2019). | spa |
dc.relation.references | D.A. Salas, A.D. Ramirez, C.R. Rodríguez, D.M. Petroche, A.J. Boero, J. Duque-Rivera, Environmental impacts, life cycle assessment and potential improvement measures for cement production: a literature review, Journal of Cleaner Production. 113 (2016) 114–122. https://doi.org/10.1016/j.jclepro.2015.11.078. | spa |
dc.relation.references | E. Cerdá, A. Khalilova, ECONOMÍA CIRCULAR, (n.d.) 10 | spa |
dc.relation.references | J. Davidovits, Geopolymer chemistry and sustainable Development. The Poly(sialate) terminology : a very useful and simple model for the promotion and understanding of greenchemistry., (n.d.) 8. | spa |
dc.relation.references | V.B. Thapa, D. Waldmann, J.-F. Wagner, A. Lecomte, Assessment of the suitability of gravel wash mud as raw material for the synthesis of an alkali-activated binder, Applied Clay Science. 161 (2018) 110–118. https://doi.org/10.1016/j.clay.2018.04.025. | spa |
dc.relation.references | P. Sturm, Hardening, high-temperature resistance and acid resistance of one-part geopolymers, PhD Thesis, Technische Universiteit Eindhoven, 2018. https://research.tue.nl/files/99010767/20180702_Sturm.pdf. | spa |
dc.relation.references | ] V.F.F. Barbosa, K.J.D. MacKenzie, Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate, Materials Research Bulletin. 38 (2003) 319– 331. https://doi.org/10.1016/S0025-5408(02)01022-X. | spa |
dc.relation.references | H.Y. Zhang, V. Kodur, B. Wu, L. Cao, F. Wang, Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures, Construction and Building Materials. 109 (2016) 17–24. https://doi.org/10.1016/j.conbuildmat.2016.01.043. | spa |
dc.relation.references | Y. Wu, B. Lu, Z. Yi, F. Du, Y. Zhang, The Properties and Latest Application of Geopolymers, IOP Conf. Ser.: Mater. Sci. Eng. 472 (2019) 012029. https://doi.org/10.1088/1757- 899X/472/1/012029. | spa |
dc.relation.references | P. Duxson, J.L. Provis, G.C. Lukey, S.W. Mallicoat, W.M. Kriven, J.S.J. van Deventer, Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 269 (2005) 47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060. | spa |
dc.relation.references | E. Papa, Geopolymers with tailored porosity, PhD Thesis, Università di Bologna Alma Mater Studiorum, 2016. | spa |
dc.relation.references | J.L. Provis, J.S.J. Van Deventer, Geopolymers: structures, processing, properties and industrial applications, First Edit, CRC Press CLC, Cornwall UK, 2009. https://books.google.com/books?hl=es&lr=&id=NqijAgAAQBAJ&oi=fnd&pg=PP1&dq=g eopolymers+structure+processing+and+industrial+applications&ots=e1ra1azney&sig=JDE 47cDltqCrbEvZoAOQScxuGeU. | spa |
dc.relation.references | S.A. Bernal, J.L. Provis, A. Fernández-Jiménez, P.V. Krivenko, E. Kavalerova, M. Palacios, C. Shi, Binder Chemistry – High-Calcium Alkali-Activated Materials, in: J.L. Provis, J.S.J. van Deventer (Eds.), Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224- AAM, Springer Netherlands, Dordrecht, 2014: pp. 59–91. https://doi.org/10.1007/978-94- 007-7672-2_3 | spa |
dc.relation.references | J.L. Provis, A. Fernández-Jiménez, E. Kamseu, C. Leonelli, A. Palomo, Binder Chemistry – Low-Calcium Alkali-Activated Materials, in: J.L. Provis, J.S.J. van Deventer (Eds.), Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Springer Netherlands, Dordrecht, 2014: pp. 93–123. https://doi.org/10.1007/978-94-007-7672-2_4. | spa |
dc.relation.references | M.A. Villaquirán Caicedo, R. Mejía de Gutiérrez, Synthesis of ternary geopolymers based on metakaolin, boiler slag and rice husk ash, DYNA. 82 (2015) 104–110. https://doi.org/10.15446/dyna.v82n194.46352. | spa |
dc.relation.references | D. Dimas, I. Giannopoulou, D. Panias, Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology, J Mater Sci. 44 (2009) 3719–3730. https://doi.org/10.1007/s10853-009-3497-5. | spa |
dc.relation.references | L.C. Álvarez, 12. Materiales Cementantes de Activación Alcalina (MAA, AAM); Geopolímeros, n.d. | spa |
dc.relation.references | D. Khale, R. Chaudhary, Mechanism of geopolymerization and factors influencing its development: a review, Journal of Materials Science. 42 (2007) 729–746. | spa |
dc.relation.references | DESEMPEÑO DE UN GEOPOLIMERO A BASE DE CENIZA VOLANTE F CON ADITIVOS SUPERPLASTIFICANTES.pdf, (n.d.). | spa |
dc.relation.references | C.R. Shearer, J.L. Provis, S.A. Bernal, K.E. Kurtis, Alkali-activation potential of biomasscoal co-fired fly ash, Cement and Concrete Composites. 73 (2016) 62–74. https://doi.org/10.1016/j.cemconcomp.2016.06.014. | spa |
dc.relation.references | J. Shekhovtsova, I. Zhernovsky, M. Kovtun, N. Kozhukhova, I. Zhernovskaya, E. Kearsley, Estimation of fly ash reactivity for use in alkali-activated cements - A step towards sustainable building material and waste utilization, Journal of Cleaner Production. 178 (2018) 22–33. https://doi.org/10.1016/j.jclepro.2017.12.270. | spa |
dc.relation.references | Z. Zhang, X. Yao, H. Zhu, S. Hua, Y. Chen, Activating process of geopolymer source material: Kaolinite, J. Wuhan Univ. Technol.-Mat. Sci. Edit. 24 (2009) 132–136. https://doi.org/10.1007/s11595-009-1132-6. | spa |
dc.relation.references | B.B. Kenne Diffo, A. Elimbi, M. Cyr, J. Dika Manga, H. Tchakoute Kouamo, Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers, Journal of Asian Ceramic Societies. 3 (2015) 130–138. https://doi.org/10.1016/j.jascer.2014.12.003. | spa |
dc.relation.references | G. Mucsi, M. Ambrus, Raw Materials for Geopolymerisation, in: The Publications of the MultiScience - XXXI. MicroCAD International Scientific Conference, University of Miskolc, 2017. https://doi.org/10.26649/musci.2017.008. | spa |
dc.relation.references | A. McIntosh, S.E.M. Lawther, J. Kwasny, M.N. Soutsos, D. Cleland, S. Nanukuttan, Selection and characterisation of geological materials for use as geopolymer precursors, Advances in Applied Ceramics. 114 (2015) 378–385. https://doi.org/10.1179/1743676115Y.0000000055. | spa |
dc.relation.references | A. Roda, INNOVATIVE GEOPOLYMERS BASED ON METAKAOLIN: SYNTHESES AND APPLICATIONS, (n.d.) 114. | spa |
dc.relation.references | C.G.S. Severo, B.S. Lira, D.L. Costa, R.R. Menezes, G.A. Neves, Ativação alcalina de resíduos minerais com NaOH, Revista Eletrônica de Materiais e Processos. 8 (2013) | spa |
dc.relation.references | J.C.C. Peñafiel, ESTUDIO EXPERIMENTAL DE GEOPOLÍMEROS DE ARCILLAS, (n.d.) 208. | spa |
dc.relation.references | J. Ordoñez, R. Fajardo, ESTUDIO INICIAl DE GEO-POlÍMEROS A PARTIR DE ARCILLAS, revfue. 13 (2015) 113–117. https://doi.org/10.18273/revfue.v13n2-2015010. | spa |
dc.relation.references | V.B. Thapa, D. Waldmann, J.-F. Wagner, A. Lecomte, Assessment of the suitability of gravel wash mud as raw material for the synthesis of an alkali-activated binder, Applied Clay Science. 161 (2018) 110–118. https://doi.org/10.1016/j.clay.2018.04.025. | spa |
dc.relation.references | X. Ke, S.A. Bernal, N. Ye, J.L. Provis, J. Yang, One-Part Geopolymers Based on Thermally Treated Red Mud/NaOH Blends, J. Am. Ceram. Soc. 98 (2015) 5–11. https://doi.org/10.1111/jace.13231. | spa |
dc.relation.references | Z. Giergiczny, Fly ash and slag, Cement and Concrete Research. 124 (2019) 105826. https://doi.org/10.1016/j.cemconres.2019.105826. | spa |
dc.relation.references | A. Fernández-Jiménez, A.G. de la Torre, A. Palomo, G. López-Olmo, M.M. Alonso, M.A.G. Aranda, Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction, Fuel. 85 (2006) 1960–1969. https://doi.org/10.1016/j.fuel.2006.04.006. | spa |
dc.relation.references | J. Temuujin, A. Minjigmaa, W. Rickard, M. Lee, I. Williams, A. van Riessen, Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation, Journal of Hazardous Materials. 180 (2010) 748–752. https://doi.org/10.1016/j.jhazmat.2010.04.121. | spa |
dc.relation.references | J.M. Mejía, R. Mejía de Gutiérrez, F. Puertas, Ceniza de cascarilla de arroz como fuente de sílice en sistemas cementicios de ceniza volante y escoria activados alcalinamente, Mater. Construcc. 63 (2013) 361–375. https://doi.org/10.3989/mc.2013.04712. | spa |
dc.relation.references | S.S. Amritphale, D. Mishra, M. Mudgal, R.K. Chouhan, N. Chandra, A novel green approach for making hybrid inorganic- organic geopolymeric cementitious material utilizing fly ash and rice husk, Journal of Environmental Chemical Engineering. 4 (2016) 3856–3865. https://doi.org/10.1016/j.jece.2016.08.015. | spa |
dc.relation.references | H.Y. Zhang, V. Kodur, S.L. Qi, L. Cao, B. Wu, Development of metakaolin–fly ash based geopolymers for fire resistance applications, Construction and Building Materials. (2014) 8. | spa |
dc.relation.references | Handbook of Alkali-Activated Cements, Mortars and Concretes, Elsevier, 2015. https://doi.org/10.1016/C2013-0-16511-7. | spa |
dc.relation.references | S. Aydın, B. Baradan, Mechanical and microstructural properties of heat cured alkaliactivated slag mortars, Materials & Design. 35 (2012) 374–383. https://doi.org/10.1016/j.matdes.2011.10.005. | spa |
dc.relation.references | Z. Abdollahnejad, T. Luukkonen, M. Mastali, C. Giosue, O. Favoni, M.L. Ruello, P. Kinnunen, M. Illikainen, Microstructural Analysis and Strength Development of One-Part Alkali-Activated Slag/Ceramic Binders Under Different Curing Regimes, Waste Biomass Valor. 11 (2020) 3081–3096. https://doi.org/10.1007/s12649-019-00626-9. | spa |
dc.relation.references | Y.-M. Liew, C.-Y. Heah, A.B. Mohd Mustafa, H. Kamarudin, Structure and properties of clay-based geopolymer cements: A review, Progress in Materials Science. 83 (2016) 595– 629. https://doi.org/10.1016/j.pmatsci.2016.08.002. | spa |
dc.relation.references | D. Khale, R. Chaudhary, Mechanism of geopolymerization and factors influencing its development: a review, J Mater Sci. 42 (2007) 729–746. https://doi.org/10.1007/s10853-006- 0401-4. | spa |
dc.relation.references | I. Ozer, S. Soyer-Uzun, Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios, Ceramics International. 41 (2015) 10192–10198. https://doi.org/10.1016/j.ceramint.2015.04.125 | spa |
dc.relation.references | ] T. Bakharev, Geopolymeric materials prepared using Class F fly ash and elevated temperature curing, Cement and Concrete Research. 35 (2005) 1224–1232. https://doi.org/10.1016/j.cemconres.2004.06.031. | spa |
dc.relation.references | V.B. Thapa, D. Waldmann, A short review on alkali-activated binders and geopolymer binders, Laboratory of Solid Structures. (n.d.) 9 | spa |
dc.relation.references | P. Duxson, J.L. Provis, Designing Precursors for Geopolymer Cements, Journal of the American Ceramic Society. 91 (2008) 3864–3869. https://doi.org/10.1111/j.1551- 2916.2008.02787.x. | spa |
dc.relation.references | S.S. Bidwe, A.A. Hamane, Effect of different molarities of Sodium Hydroxide solution on the Strength of Geopolymer concrete, American Journal of Engineering Research. 4 (2015) 7. www.ajer.org. | spa |
dc.relation.references | A. Hajimohammadi, J.L. Provis, J.S.J. van Deventer, One-Part Geopolymer Mixes from Geothermal Silica and Sodium Aluminate, Ind. Eng. Chem. Res. 47 (2008) 9396–9405. https://doi.org/10.1021/ie8006825. | spa |
dc.relation.references | F. Pacheco-Torgal, J. Castro-Gomes, S. Jalali, Alkali-activated binders: A review, Construction and Building Materials. 22 (2008) 1305–1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015. | spa |
dc.relation.references | Synthesis of New HighT emperature Geo-Polymers for Reinforced Plastics Composites.pdf, (n.d.). | spa |
dc.relation.references | A. Fernández-Jiménez, A. Palomo, I. Sobrados, J. Sanz, The role played by the reactive alumina content in the alkaline activation of fly ashes, Microporous and Mesoporous Materials. 91 (2006) 111–119. https://doi.org/10.1016/j.micromeso.2005.11.015. | spa |
dc.relation.references | J.L. Provis, P. Duxson, J.S.J. Van Deventer, G.C. Lukey, The Role of Mathematical Modelling and Gel Chemistry in Advancing Geopolymer Technology, Chemical Engineering Research and Design. 83 (2005) 853–860. https://doi.org/10.1205/cherd.04329. | spa |
dc.relation.references | X.Y. Zhuang, L. Chen, S. Komarneni, C.H. Zhou, D.S. Tong, H.M. Yang, W.H. Yu, H. Wang, Fly ash-based geopolymer: clean production, properties and applications, Journal of Cleaner Production. 125 (2016) 253–267. https://doi.org/10.1016/j.jclepro.2016.03.019. | spa |
dc.relation.references | A. Fernández-Jiménez, A. Palomo, M. Criado, Microstructure development of alkaliactivated fly ash cement: a descriptive model, Cement and Concrete Research. 35 (2005) 1204–1209. https://doi.org/10.1016/j.cemconres.2004.08.021. | spa |
dc.relation.references | M.C. Bignozzi, High-Temperature Behaviour of Alkali-Activated Composites based on Fly Ash and Recycled Refractory Particles, J. Ceram. Sci. Technol. (2017). https://doi.org/10.4416/JCST2017-00047. | spa |
dc.relation.references | C. Kuenzel, L.J. Vandeperre, S. Donatello, A.R. Boccaccini, C. Cheeseman, Ambient Temperature Drying Shrinkage and Cracking in Metakaolin-Based Geopolymers, J. Am. Ceram. Soc. 95 (2012) 3270–3277. https://doi.org/10.1111/j.1551-2916.2012.05380.x. | spa |
dc.relation.references | M.A. Villaquirán‐Caicedo, R. Mejía de Gutiérrez, Mechanical and microstructural analysis of geopolymer composites based on metakaolin and recycled silica, J Am Ceram Soc. 102 (2019) 3653–3662. https://doi.org/10.1111/jace.16208. | spa |
dc.relation.references | F. Pacheco-Torgal, J. Castro-Gomes, S. Jalali, Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders, Cement and Concrete Research. 37 (2007) 933–941. https://doi.org/10.1016/j.cemconres.2007.02.006. | spa |
dc.relation.references | S.S. Musil, W.M. Kriven, In Situ Mechanical Properties of Chamotte Particulate Reinforced, Potassium Geopolymer, J. Am. Ceram. Soc. 97 (2014) 907–915. https://doi.org/10.1111/jace.12736 | spa |
dc.relation.references | M.A. Villaquirán-Caicedo, R. Mejía de Gutiérrez, N.C. Gallego, A Novel MK-based Geopolymer Composite Activated with Rice Husk Ash and KOH: Performance at High Temperature, Mater. Construcc. 67 (2017) 117. https://doi.org/10.3989/mc.2017.02316. | spa |
dc.relation.references | S.V. Vassilev, C.G. Vassileva, A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour, Fuel. 86 (2007) 1490–1512. https://doi.org/10.1016/j.fuel.2006.11.020. | spa |
dc.relation.references | J. Yliniemi, B. Walkley, J.L. Provis, P. Kinnunen, M. Illikainen, Influence of activator type on reaction kinetics, setting time, and compressive strength of alkali-activated mineral wools, J Therm Anal Calorim. 144 (2021) 1129–1138. https://doi.org/10.1007/s10973-020-09651- 6 | spa |
dc.relation.references | Z. Zhang, J.L. Provis, A. Reid, H. Wang, Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence, Cement and Concrete Research. 64 (2014) 30–41. https://doi.org/10.1016/j.cemconres.2014.06.004. | spa |
dc.relation.references | R.A. García León, R. Bolívar León, Caracterización hidrométrica de las arcillas utilizadas en la fabricación de productos cerámicos en Ocaña, Norte de Santander, INGE CUC. 13 (2017) 53–60. https://doi.org/10.17981/ingecuc.13.1.2017.05. | spa |
dc.relation.references | Davidovits - 6 basic rules in Geopolymer Cement processing.pdf, (n.d.). | spa |
dc.relation.references | M. Dong, M. Elchalakani, A. Karrech, Development of high strength one-part geopolymer mortar using sodium metasilicate, Construction and Building Materials. 236 (2020) 117611. https://doi.org/10.1016/j.conbuildmat.2019.117611. | spa |
dc.relation.references | T. Xie, P. Visintin, A unified approach for mix design of concrete containing supplementary cementitious materials based on reactivity moduli, Journal of Cleaner Production. 203 (2018) 68–82. https://doi.org/10.1016/j.jclepro.2018.08.254. | spa |
dc.relation.references | J.G.S. van Jaarsveld, J.S.J. van Deventer, G.C. Lukey, The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers, Chemical Engineering Journal. 89 (2002) 63–73. https://doi.org/10.1016/S1385-8947(02)00025-6. | spa |
dc.relation.references | F. Pacheco-Torgal, J. Castro-Gomes, S. Jalali, Alkali-activated binders: A review. Part 2. About materials and binders manufacture, Construction and Building Materials. 22 (2008) 1315–1322. https://doi.org/10.1016/j.conbuildmat.2007.03.019. | spa |
dc.relation.references | C. Famy, K.L. Scrivener, A. Atkinson, A.R. Brough, Influence of the storage conditions on the dimensional changes of heat-cured mortars, Cement and Concrete Research. 31 (2001) 795–803. https://doi.org/10.1016/S0008-8846(01)00480-X. | spa |
dc.relation.references | A.V. Kirschner, H. Harmuth, INVESTIGATION OF GEOPOLYMER BINDERS WITH RESPECT TO THEIR APPLICATION FOR BUILDING MATERIALS, (2004) 4. | spa |
dc.relation.references | Z. Zhang, J.L. Provis, X. Ma, A. Reid, H. Wang, Efflorescence and subflorescence induced microstructural and mechanical evolution in fly ash-based geopolymers, Cement and Concrete Composites. 92 (2018) 165–177. https://doi.org/10.1016/j.cemconcomp.2018.06.010. | spa |
dc.relation.references | A.M. Aguirre-Guerrero, R.A. Robayo-Salazar, R.M. de Gutiérrez, A novel geopolymer application: Coatings to protect reinforced concrete against corrosion, Applied Clay Science. 135 (2017) 437–446. https://doi.org/10.1016/j.clay.2016.10.029. | spa |
dc.rights | Derechos Reservados - Universidad ECCI, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.subject.proposal | Geopolímeros | spa |
dc.subject.proposal | Refractarios | spa |
dc.subject.proposal | Industria ladrillera | spa |
dc.subject.proposal | Economía circular | spa |
dc.title | Obtención de un motero refractario geopolimérico teniendo como materias primas cenizas de carbón, chamota de ladrillo y residuos arcillosos | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/WP | spa |
dc.type.version | info:eu-repo/semantics/updatedVersion | spa |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 6.04 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...

- Nombre:
- FR-DO-033.pdf
- Tamaño:
- 467.75 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...

- Nombre:
- FR-IN-125.pdf
- Tamaño:
- 843.86 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
Cargando...

- Nombre:
- license.txt
- Tamaño:
- 14.45 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: