Publicación:
Obtención de un motero refractario geopolimérico teniendo como materias primas cenizas de carbón, chamota de ladrillo y residuos arcillosos

dc.contributor.advisorOrozco Hernández, Giovany
dc.contributor.authorQuintero Guzmán, Camilo Andrés
dc.date.accessioned2023-11-02T14:59:56Z
dc.date.available2023-11-02T14:59:56Z
dc.date.issued2023
dc.description.abstractSe ha desarrollado un mortero geopolimérico teniendo como materias primas de partida cenizas de carbón, chamota de ladrillo y residuos arcillosos, usando como activadores alcalinos una mezcla de silicato de sodio y aluminato de sodio. Las materias primas fueron caracterizadas por fluorescencia de rayos X FRX, difracción de rayos X DRX, análisis termo gravimétrico TGA y térmico diferencial DTA y su morfología fue estudiada por medio de microscopía electrónica de barrido MEB con análisis EDAX teniendo como comparativo un mortero de uso comercial. Los ensayos fueron realizados buscando una relación activadores/precursores que permitan tener una buena manejabilidad, buena fluidez y buena consistencia. Se encontró que usando una relación activador / precursor del 0,81 se obtuvieron estas condiciones. La caracterización de materias primas evidenció que es necesario que la ceniza esté en mayores proporciones para que haya una buena fluidez y para que haya bajas contracciones de secado debe existir una adecuada proporción de chamota y bajas proporciones de residuo arcilloso. Una vez realizada la optimización reológica, se hicieron pruebas de curado a diferentes temperaturas encontrándose que la temperatura óptima de curado es de 70°C. Se realizaron pruebas de resistencia a la compresión y adherencia antes de cocción obteniendo valores muy similares a los encontrados en morteros convencionales y al mortero de referencia. La formulación F14-9 fue sometida a cocción a la temperatura promedio de uso de los hornos ladrilleros (980°C) y se encontró que a esta temperatura la formulación tiene buena adherencia lo que permite concluir que el mortero desarrollado cumple con los requisitos técnicos para ser usado como un producto comercial. Por último, se realizaron pruebas sucesivas de calentamiento y enfriamiento a 980°C encontrándose que después de 11 ciclos el mortero sigue teniendo adherencia mientras que el mortero comercial de referencia a los 6 ciclos empieza a desprenderse.spa
dc.description.abstractA geopolymeric mortar has been developed using coal ash, brick chamotte and clay residues as raw materials, using a mixture of sodium silicate and sodium aluminate as alkaline activators. The raw materials were characterized by X-ray fluorescence XRF, X-ray diffraction XRD, thermo gravimetric analysis TGA and differential thermal analysis DTA and their morphology was studied by scanning electron microscopy SEM with EDAX analysis using a commercial mortar as a comparison. The tests were carried out looking for an activator/precursor ratio that would allow good workability, good flowability and good consistency. It was found that using an activator/precursor ratio of 0.81, good workability, fluidity and consistency conditions were obtained. The characterization of raw materials showed that it is necessary for the ash to be in higher proportions for good fluidity and for there to be low drying contractions there must be an adequate proportion of chamotte and low proportions of clay residue. Once the rheological optimization was performed, curing tests were carried out at different temperatures and the optimum curing temperature was found to be 70°C. Compressive strength and adhesion tests were carried out before firing, obtaining values very similar to those found in conventional mortars and to the reference mortar. The F14-9 formulation was fired at the average temperature of use in brick kilns (980°C) and it was found that at this temperature the formulation has good adherence, which allowed us to conclude that the mortar developed meets the technical requirements to be used as a commercial product. Finally, successive heating and cooling tests were carried out at 980°C and it was found that after 11 cycles the binder still adheres while the commercial reference mortar starts to detach after 6 cycles.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Materiales y Procesos Industrialesspa
dc.description.programMaestría en Materiales y Procesos Industrialesspa
dc.description.tableofcontents1. INTRODUCCIÓN . 9 2. PALABRAS CLAVE 11 3. PLANTEAMIENTO DEL PROBLEMA 11 4. OBJETIVOS 12 4.1. General 12 4.2 Específicos 12 5. DESARROLLO TEMATICO . 13 5.1. Generalidades. 13 6.1 Activación alcalina, Geopolímeros y Nomenclatura 15 6.1 Materias primas usadas en geopolímeros. 19 6.1 Activadores alcalinos 23 5.5 Geopolímeros con propiedades refractarias . 30 6. METODOLOGÍA 31 6.1 Caracterización de Materias Primas. 32 6.2 Desarrollo de formulaciones preliminares y ajuste de la reología 36 6.3 Pruebas de curado con la temperatura 38 6.4 Evaluación de la resistencia a la compresión mortero curado a 70°C por 24 horas. 38 6.5 Pruebas de adherencia 38 6.6 Evaluación de la morfología del mortero obtenido por microscopía electrónica de barrio39 6.7 Evaluación de desempeño 39 iv 7. RESULTADOS Y DISCUSIÓN . 39 7.1 Análisis químico por FRX 39 7.2 Análisis mineralógico por DRX . 43 7.3 Análisis de distribución de tamaño de partícula por Láser -DTP- . 47 7.4 Análisis Termo gravimétrico y térmico diferencial -ATG – ATD- 53 7.5 Formulaciones preliminares . 56 7.6 Ajuste de la reología del mortero . 64 7.7 Evaluación de la temperatura de fraguado . 68 7.8 Evaluación de la resistencia a la compresión . 73 7.9 Evaluación de la adherencia del mortero a la temperatura de uso de hornos ladrilleros75 7.10 Morfología de materias primas y geopolímero obtenido 79 7.11 Comportamiento preliminar en uso industrial 89 8. CONCLUSIONES Y RECOMENDACIONES 92 9. BIBLIOGRAFÍAspa
dc.format.extent105 p.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.ecci.edu.co/handle/001/3704
dc.language.isospaspa
dc.publisherUniversidad ECCIspa
dc.publisher.facultyPosgradosspa
dc.publisher.placeColombiaspa
dc.relation.referencesM. Nodehi, V.M. Taghvaee, Alkali-Activated Materials and Geopolymer: a Review of Common Precursors and Activators Addressing Circular Economy, Circ.Econ.Sust. (2021). https://doi.org/10.1007/s43615-021-00029-w.spa
dc.relation.referencesEELA. Programa de Eficiencia Energética en Ladrilleras de América Latina para Mitigar el Cambio Climático - RED DE LADRILLERAS, (n.d.). http://www.redladrilleras.net/eelaprograma-eficiencia-energetica-ladrilleras-america-latina-mitigar-cambio-climatico/ (accessed October 8, 2020).spa
dc.relation.referencesTransformación y Perspectivas del Sector Ladrillero en América Latina, Climate & Clean Air Coalition. (n.d.). https://www.ccacoalition.org/en/node/2397 (accessed March 25, 2022)spa
dc.relation.referencesC. Quintero, INFORME VISITAS A ZONAS LADRILLERAS DE LA REPUBLICA DEL URUGUAY, (2019).spa
dc.relation.referencesD.A. Salas, A.D. Ramirez, C.R. Rodríguez, D.M. Petroche, A.J. Boero, J. Duque-Rivera, Environmental impacts, life cycle assessment and potential improvement measures for cement production: a literature review, Journal of Cleaner Production. 113 (2016) 114–122. https://doi.org/10.1016/j.jclepro.2015.11.078.spa
dc.relation.referencesE. Cerdá, A. Khalilova, ECONOMÍA CIRCULAR, (n.d.) 10spa
dc.relation.referencesJ. Davidovits, Geopolymer chemistry and sustainable Development. The Poly(sialate) terminology : a very useful and simple model for the promotion and understanding of greenchemistry., (n.d.) 8.spa
dc.relation.referencesV.B. Thapa, D. Waldmann, J.-F. Wagner, A. Lecomte, Assessment of the suitability of gravel wash mud as raw material for the synthesis of an alkali-activated binder, Applied Clay Science. 161 (2018) 110–118. https://doi.org/10.1016/j.clay.2018.04.025.spa
dc.relation.referencesP. Sturm, Hardening, high-temperature resistance and acid resistance of one-part geopolymers, PhD Thesis, Technische Universiteit Eindhoven, 2018. https://research.tue.nl/files/99010767/20180702_Sturm.pdf.spa
dc.relation.references] V.F.F. Barbosa, K.J.D. MacKenzie, Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate, Materials Research Bulletin. 38 (2003) 319– 331. https://doi.org/10.1016/S0025-5408(02)01022-X.spa
dc.relation.referencesH.Y. Zhang, V. Kodur, B. Wu, L. Cao, F. Wang, Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures, Construction and Building Materials. 109 (2016) 17–24. https://doi.org/10.1016/j.conbuildmat.2016.01.043.spa
dc.relation.referencesY. Wu, B. Lu, Z. Yi, F. Du, Y. Zhang, The Properties and Latest Application of Geopolymers, IOP Conf. Ser.: Mater. Sci. Eng. 472 (2019) 012029. https://doi.org/10.1088/1757- 899X/472/1/012029.spa
dc.relation.referencesP. Duxson, J.L. Provis, G.C. Lukey, S.W. Mallicoat, W.M. Kriven, J.S.J. van Deventer, Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 269 (2005) 47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060.spa
dc.relation.referencesE. Papa, Geopolymers with tailored porosity, PhD Thesis, Università di Bologna Alma Mater Studiorum, 2016.spa
dc.relation.referencesJ.L. Provis, J.S.J. Van Deventer, Geopolymers: structures, processing, properties and industrial applications, First Edit, CRC Press CLC, Cornwall UK, 2009. https://books.google.com/books?hl=es&lr=&id=NqijAgAAQBAJ&oi=fnd&pg=PP1&dq=g eopolymers+structure+processing+and+industrial+applications&ots=e1ra1azney&sig=JDE 47cDltqCrbEvZoAOQScxuGeU.spa
dc.relation.referencesS.A. Bernal, J.L. Provis, A. Fernández-Jiménez, P.V. Krivenko, E. Kavalerova, M. Palacios, C. Shi, Binder Chemistry – High-Calcium Alkali-Activated Materials, in: J.L. Provis, J.S.J. van Deventer (Eds.), Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224- AAM, Springer Netherlands, Dordrecht, 2014: pp. 59–91. https://doi.org/10.1007/978-94- 007-7672-2_3spa
dc.relation.referencesJ.L. Provis, A. Fernández-Jiménez, E. Kamseu, C. Leonelli, A. Palomo, Binder Chemistry – Low-Calcium Alkali-Activated Materials, in: J.L. Provis, J.S.J. van Deventer (Eds.), Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Springer Netherlands, Dordrecht, 2014: pp. 93–123. https://doi.org/10.1007/978-94-007-7672-2_4.spa
dc.relation.referencesM.A. Villaquirán Caicedo, R. Mejía de Gutiérrez, Synthesis of ternary geopolymers based on metakaolin, boiler slag and rice husk ash, DYNA. 82 (2015) 104–110. https://doi.org/10.15446/dyna.v82n194.46352.spa
dc.relation.referencesD. Dimas, I. Giannopoulou, D. Panias, Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology, J Mater Sci. 44 (2009) 3719–3730. https://doi.org/10.1007/s10853-009-3497-5.spa
dc.relation.referencesL.C. Álvarez, 12. Materiales Cementantes de Activación Alcalina (MAA, AAM); Geopolímeros, n.d.spa
dc.relation.referencesD. Khale, R. Chaudhary, Mechanism of geopolymerization and factors influencing its development: a review, Journal of Materials Science. 42 (2007) 729–746.spa
dc.relation.referencesDESEMPEÑO DE UN GEOPOLIMERO A BASE DE CENIZA VOLANTE F CON ADITIVOS SUPERPLASTIFICANTES.pdf, (n.d.).spa
dc.relation.referencesC.R. Shearer, J.L. Provis, S.A. Bernal, K.E. Kurtis, Alkali-activation potential of biomasscoal co-fired fly ash, Cement and Concrete Composites. 73 (2016) 62–74. https://doi.org/10.1016/j.cemconcomp.2016.06.014.spa
dc.relation.referencesJ. Shekhovtsova, I. Zhernovsky, M. Kovtun, N. Kozhukhova, I. Zhernovskaya, E. Kearsley, Estimation of fly ash reactivity for use in alkali-activated cements - A step towards sustainable building material and waste utilization, Journal of Cleaner Production. 178 (2018) 22–33. https://doi.org/10.1016/j.jclepro.2017.12.270.spa
dc.relation.referencesZ. Zhang, X. Yao, H. Zhu, S. Hua, Y. Chen, Activating process of geopolymer source material: Kaolinite, J. Wuhan Univ. Technol.-Mat. Sci. Edit. 24 (2009) 132–136. https://doi.org/10.1007/s11595-009-1132-6.spa
dc.relation.referencesB.B. Kenne Diffo, A. Elimbi, M. Cyr, J. Dika Manga, H. Tchakoute Kouamo, Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers, Journal of Asian Ceramic Societies. 3 (2015) 130–138. https://doi.org/10.1016/j.jascer.2014.12.003.spa
dc.relation.referencesG. Mucsi, M. Ambrus, Raw Materials for Geopolymerisation, in: The Publications of the MultiScience - XXXI. MicroCAD International Scientific Conference, University of Miskolc, 2017. https://doi.org/10.26649/musci.2017.008.spa
dc.relation.referencesA. McIntosh, S.E.M. Lawther, J. Kwasny, M.N. Soutsos, D. Cleland, S. Nanukuttan, Selection and characterisation of geological materials for use as geopolymer precursors, Advances in Applied Ceramics. 114 (2015) 378–385. https://doi.org/10.1179/1743676115Y.0000000055.spa
dc.relation.referencesA. Roda, INNOVATIVE GEOPOLYMERS BASED ON METAKAOLIN: SYNTHESES AND APPLICATIONS, (n.d.) 114.spa
dc.relation.referencesC.G.S. Severo, B.S. Lira, D.L. Costa, R.R. Menezes, G.A. Neves, Ativação alcalina de resíduos minerais com NaOH, Revista Eletrônica de Materiais e Processos. 8 (2013)spa
dc.relation.referencesJ.C.C. Peñafiel, ESTUDIO EXPERIMENTAL DE GEOPOLÍMEROS DE ARCILLAS, (n.d.) 208.spa
dc.relation.referencesJ. Ordoñez, R. Fajardo, ESTUDIO INICIAl DE GEO-POlÍMEROS A PARTIR DE ARCILLAS, revfue. 13 (2015) 113–117. https://doi.org/10.18273/revfue.v13n2-2015010.spa
dc.relation.referencesV.B. Thapa, D. Waldmann, J.-F. Wagner, A. Lecomte, Assessment of the suitability of gravel wash mud as raw material for the synthesis of an alkali-activated binder, Applied Clay Science. 161 (2018) 110–118. https://doi.org/10.1016/j.clay.2018.04.025.spa
dc.relation.referencesX. Ke, S.A. Bernal, N. Ye, J.L. Provis, J. Yang, One-Part Geopolymers Based on Thermally Treated Red Mud/NaOH Blends, J. Am. Ceram. Soc. 98 (2015) 5–11. https://doi.org/10.1111/jace.13231.spa
dc.relation.referencesZ. Giergiczny, Fly ash and slag, Cement and Concrete Research. 124 (2019) 105826. https://doi.org/10.1016/j.cemconres.2019.105826.spa
dc.relation.referencesA. Fernández-Jiménez, A.G. de la Torre, A. Palomo, G. López-Olmo, M.M. Alonso, M.A.G. Aranda, Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction, Fuel. 85 (2006) 1960–1969. https://doi.org/10.1016/j.fuel.2006.04.006.spa
dc.relation.referencesJ. Temuujin, A. Minjigmaa, W. Rickard, M. Lee, I. Williams, A. van Riessen, Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation, Journal of Hazardous Materials. 180 (2010) 748–752. https://doi.org/10.1016/j.jhazmat.2010.04.121.spa
dc.relation.referencesJ.M. Mejía, R. Mejía de Gutiérrez, F. Puertas, Ceniza de cascarilla de arroz como fuente de sílice en sistemas cementicios de ceniza volante y escoria activados alcalinamente, Mater. Construcc. 63 (2013) 361–375. https://doi.org/10.3989/mc.2013.04712.spa
dc.relation.referencesS.S. Amritphale, D. Mishra, M. Mudgal, R.K. Chouhan, N. Chandra, A novel green approach for making hybrid inorganic- organic geopolymeric cementitious material utilizing fly ash and rice husk, Journal of Environmental Chemical Engineering. 4 (2016) 3856–3865. https://doi.org/10.1016/j.jece.2016.08.015.spa
dc.relation.referencesH.Y. Zhang, V. Kodur, S.L. Qi, L. Cao, B. Wu, Development of metakaolin–fly ash based geopolymers for fire resistance applications, Construction and Building Materials. (2014) 8.spa
dc.relation.referencesHandbook of Alkali-Activated Cements, Mortars and Concretes, Elsevier, 2015. https://doi.org/10.1016/C2013-0-16511-7.spa
dc.relation.referencesS. Aydın, B. Baradan, Mechanical and microstructural properties of heat cured alkaliactivated slag mortars, Materials & Design. 35 (2012) 374–383. https://doi.org/10.1016/j.matdes.2011.10.005.spa
dc.relation.referencesZ. Abdollahnejad, T. Luukkonen, M. Mastali, C. Giosue, O. Favoni, M.L. Ruello, P. Kinnunen, M. Illikainen, Microstructural Analysis and Strength Development of One-Part Alkali-Activated Slag/Ceramic Binders Under Different Curing Regimes, Waste Biomass Valor. 11 (2020) 3081–3096. https://doi.org/10.1007/s12649-019-00626-9.spa
dc.relation.referencesY.-M. Liew, C.-Y. Heah, A.B. Mohd Mustafa, H. Kamarudin, Structure and properties of clay-based geopolymer cements: A review, Progress in Materials Science. 83 (2016) 595– 629. https://doi.org/10.1016/j.pmatsci.2016.08.002.spa
dc.relation.referencesD. Khale, R. Chaudhary, Mechanism of geopolymerization and factors influencing its development: a review, J Mater Sci. 42 (2007) 729–746. https://doi.org/10.1007/s10853-006- 0401-4.spa
dc.relation.referencesI. Ozer, S. Soyer-Uzun, Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios, Ceramics International. 41 (2015) 10192–10198. https://doi.org/10.1016/j.ceramint.2015.04.125spa
dc.relation.references] T. Bakharev, Geopolymeric materials prepared using Class F fly ash and elevated temperature curing, Cement and Concrete Research. 35 (2005) 1224–1232. https://doi.org/10.1016/j.cemconres.2004.06.031.spa
dc.relation.referencesV.B. Thapa, D. Waldmann, A short review on alkali-activated binders and geopolymer binders, Laboratory of Solid Structures. (n.d.) 9spa
dc.relation.referencesP. Duxson, J.L. Provis, Designing Precursors for Geopolymer Cements, Journal of the American Ceramic Society. 91 (2008) 3864–3869. https://doi.org/10.1111/j.1551- 2916.2008.02787.x.spa
dc.relation.referencesS.S. Bidwe, A.A. Hamane, Effect of different molarities of Sodium Hydroxide solution on the Strength of Geopolymer concrete, American Journal of Engineering Research. 4 (2015) 7. www.ajer.org.spa
dc.relation.referencesA. Hajimohammadi, J.L. Provis, J.S.J. van Deventer, One-Part Geopolymer Mixes from Geothermal Silica and Sodium Aluminate, Ind. Eng. Chem. Res. 47 (2008) 9396–9405. https://doi.org/10.1021/ie8006825.spa
dc.relation.referencesF. Pacheco-Torgal, J. Castro-Gomes, S. Jalali, Alkali-activated binders: A review, Construction and Building Materials. 22 (2008) 1305–1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015.spa
dc.relation.referencesSynthesis of New HighT emperature Geo-Polymers for Reinforced Plastics Composites.pdf, (n.d.).spa
dc.relation.referencesA. Fernández-Jiménez, A. Palomo, I. Sobrados, J. Sanz, The role played by the reactive alumina content in the alkaline activation of fly ashes, Microporous and Mesoporous Materials. 91 (2006) 111–119. https://doi.org/10.1016/j.micromeso.2005.11.015.spa
dc.relation.referencesJ.L. Provis, P. Duxson, J.S.J. Van Deventer, G.C. Lukey, The Role of Mathematical Modelling and Gel Chemistry in Advancing Geopolymer Technology, Chemical Engineering Research and Design. 83 (2005) 853–860. https://doi.org/10.1205/cherd.04329.spa
dc.relation.referencesX.Y. Zhuang, L. Chen, S. Komarneni, C.H. Zhou, D.S. Tong, H.M. Yang, W.H. Yu, H. Wang, Fly ash-based geopolymer: clean production, properties and applications, Journal of Cleaner Production. 125 (2016) 253–267. https://doi.org/10.1016/j.jclepro.2016.03.019.spa
dc.relation.referencesA. Fernández-Jiménez, A. Palomo, M. Criado, Microstructure development of alkaliactivated fly ash cement: a descriptive model, Cement and Concrete Research. 35 (2005) 1204–1209. https://doi.org/10.1016/j.cemconres.2004.08.021.spa
dc.relation.referencesM.C. Bignozzi, High-Temperature Behaviour of Alkali-Activated Composites based on Fly Ash and Recycled Refractory Particles, J. Ceram. Sci. Technol. (2017). https://doi.org/10.4416/JCST2017-00047.spa
dc.relation.referencesC. Kuenzel, L.J. Vandeperre, S. Donatello, A.R. Boccaccini, C. Cheeseman, Ambient Temperature Drying Shrinkage and Cracking in Metakaolin-Based Geopolymers, J. Am. Ceram. Soc. 95 (2012) 3270–3277. https://doi.org/10.1111/j.1551-2916.2012.05380.x.spa
dc.relation.referencesM.A. Villaquirán‐Caicedo, R. Mejía de Gutiérrez, Mechanical and microstructural analysis of geopolymer composites based on metakaolin and recycled silica, J Am Ceram Soc. 102 (2019) 3653–3662. https://doi.org/10.1111/jace.16208.spa
dc.relation.referencesF. Pacheco-Torgal, J. Castro-Gomes, S. Jalali, Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders, Cement and Concrete Research. 37 (2007) 933–941. https://doi.org/10.1016/j.cemconres.2007.02.006.spa
dc.relation.referencesS.S. Musil, W.M. Kriven, In Situ Mechanical Properties of Chamotte Particulate Reinforced, Potassium Geopolymer, J. Am. Ceram. Soc. 97 (2014) 907–915. https://doi.org/10.1111/jace.12736spa
dc.relation.referencesM.A. Villaquirán-Caicedo, R. Mejía de Gutiérrez, N.C. Gallego, A Novel MK-based Geopolymer Composite Activated with Rice Husk Ash and KOH: Performance at High Temperature, Mater. Construcc. 67 (2017) 117. https://doi.org/10.3989/mc.2017.02316.spa
dc.relation.referencesS.V. Vassilev, C.G. Vassileva, A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour, Fuel. 86 (2007) 1490–1512. https://doi.org/10.1016/j.fuel.2006.11.020.spa
dc.relation.referencesJ. Yliniemi, B. Walkley, J.L. Provis, P. Kinnunen, M. Illikainen, Influence of activator type on reaction kinetics, setting time, and compressive strength of alkali-activated mineral wools, J Therm Anal Calorim. 144 (2021) 1129–1138. https://doi.org/10.1007/s10973-020-09651- 6spa
dc.relation.referencesZ. Zhang, J.L. Provis, A. Reid, H. Wang, Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence, Cement and Concrete Research. 64 (2014) 30–41. https://doi.org/10.1016/j.cemconres.2014.06.004.spa
dc.relation.referencesR.A. García León, R. Bolívar León, Caracterización hidrométrica de las arcillas utilizadas en la fabricación de productos cerámicos en Ocaña, Norte de Santander, INGE CUC. 13 (2017) 53–60. https://doi.org/10.17981/ingecuc.13.1.2017.05.spa
dc.relation.referencesDavidovits - 6 basic rules in Geopolymer Cement processing.pdf, (n.d.).spa
dc.relation.referencesM. Dong, M. Elchalakani, A. Karrech, Development of high strength one-part geopolymer mortar using sodium metasilicate, Construction and Building Materials. 236 (2020) 117611. https://doi.org/10.1016/j.conbuildmat.2019.117611.spa
dc.relation.referencesT. Xie, P. Visintin, A unified approach for mix design of concrete containing supplementary cementitious materials based on reactivity moduli, Journal of Cleaner Production. 203 (2018) 68–82. https://doi.org/10.1016/j.jclepro.2018.08.254.spa
dc.relation.referencesJ.G.S. van Jaarsveld, J.S.J. van Deventer, G.C. Lukey, The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers, Chemical Engineering Journal. 89 (2002) 63–73. https://doi.org/10.1016/S1385-8947(02)00025-6.spa
dc.relation.referencesF. Pacheco-Torgal, J. Castro-Gomes, S. Jalali, Alkali-activated binders: A review. Part 2. About materials and binders manufacture, Construction and Building Materials. 22 (2008) 1315–1322. https://doi.org/10.1016/j.conbuildmat.2007.03.019.spa
dc.relation.referencesC. Famy, K.L. Scrivener, A. Atkinson, A.R. Brough, Influence of the storage conditions on the dimensional changes of heat-cured mortars, Cement and Concrete Research. 31 (2001) 795–803. https://doi.org/10.1016/S0008-8846(01)00480-X.spa
dc.relation.referencesA.V. Kirschner, H. Harmuth, INVESTIGATION OF GEOPOLYMER BINDERS WITH RESPECT TO THEIR APPLICATION FOR BUILDING MATERIALS, (2004) 4.spa
dc.relation.referencesZ. Zhang, J.L. Provis, X. Ma, A. Reid, H. Wang, Efflorescence and subflorescence induced microstructural and mechanical evolution in fly ash-based geopolymers, Cement and Concrete Composites. 92 (2018) 165–177. https://doi.org/10.1016/j.cemconcomp.2018.06.010.spa
dc.relation.referencesA.M. Aguirre-Guerrero, R.A. Robayo-Salazar, R.M. de Gutiérrez, A novel geopolymer application: Coatings to protect reinforced concrete against corrosion, Applied Clay Science. 135 (2017) 437–446. https://doi.org/10.1016/j.clay.2016.10.029.spa
dc.rightsDerechos Reservados - Universidad ECCI, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.subject.proposalGeopolímerosspa
dc.subject.proposalRefractariosspa
dc.subject.proposalIndustria ladrilleraspa
dc.subject.proposalEconomía circularspa
dc.titleObtención de un motero refractario geopolimérico teniendo como materias primas cenizas de carbón, chamota de ladrillo y residuos arcillososspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
6.04 MB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
FR-DO-033.pdf
Tamaño:
467.75 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
FR-IN-125.pdf
Tamaño:
843.86 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.45 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones

Universidad ECCI | Vigilada Mineducación

Reconocimiento como Universidad: Resolución No. 13370 de 19 de Agosto de 2014.

© – Derechos Reservados Universidad ECCI – Fundada en 1977

Correo Electrónico Notificaciones judiciales

notificaciones.judiciales@ecci.edu.co

Correo Electrónico de Atención al ciudadano

info@ecci.edu.co