Publication: Simulación computacional del proceso de digestión anaerobia de biomasa
dc.contributor.advisor | Fontalvo Morales, Víctor Manuel | |
dc.contributor.advisor | González Carantón, Alberth Renne | |
dc.contributor.author | Zorro Espinosa, David Alejandro | |
dc.contributor.author | Caraballo Castro, Rodrigo Steffan | |
dc.date.accessioned | 2021-09-28T15:14:53Z | |
dc.date.available | 2021-09-28T15:14:53Z | |
dc.date.issued | 2020 | |
dc.description.abstract | El documento contiene el análisis de un proceso de simulación por computadora del proceso de biodigestión anaerobia, en el que se evaluaron tres variables de la materia a la entrada del biodigestor, y como influyeron en la composición y energía del biogás producido a la salida del biodigestor. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero en Mecánica | spa |
dc.description.program | Ingeniería Mecánica | spa |
dc.description.tableofcontents | 1.análisis numérico de la cantidad de metano ch4 producido a través del Proceso de biodigestión anaerobia 2.problema de investigación 2.1. descripción del problema 2.2. Formulación del problema 3. Objetivos de la investigación 3.1. Objetivo general 3.2. Objetivos específicos 4. Justificación y delimitación de la investigación 4.1. Justificación 4.2. Delimitación 5. Marco de referencia de la Investigación 5.1. Marco teórico 5.2. Marco conceptual 5.3. Marco legal 5.4. Marco histórico 6. Tipo de investigación 7. Diseño metodológico 8. Resultados 8.1. Descripción del proceso de biodigestion anaerobia en la Simulación 8.2. Diagrama de flujo en la simulación 8.3. Análisis de la composición de biomasas agrícolas Utilizadas 8.4. Datos experimentales obtenidos 8.5. Análisis ANOVA para la composición del biogás 8.5.1 análisis ANOVA para la composición de metano obtenida 8.5.2. Análisis ANOVA para la composición de dióxido de carbono (co2) obtenida: 8.5.3. Análisis ANOVA para el poder calorífico LHV 8.5.4. Análisis ANOVA para la energía libre de GIBBS de la corriente de salida 8.6. Matriz de correlación 9. Conclusiones 10. Referencias bibliográficas | spa |
dc.format.extent | 94 p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Caraballo Castro, R., Zorro Espinosa, D. (2020). Simulación computacional del proceso de digestión anaerobia de biomasa. Universidad ECCI | spa |
dc.identifier.uri | https://repositorio.ecci.edu.co/handle/001/1608 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad ECCI | spa |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.publisher.place | Colombia | spa |
dc.relation.indexed | N/A | spa |
dc.relation.references | Allegue, L. B., & Hinge, J. (2012). Biogas and bio-syngas upgrading. Danish Technological Institute, December. | spa |
dc.relation.references | Ampuero Seguel, F. A. (2018). Desarrollo de ingeniería Conceptual Y básica para la implementación de la tecnología de biodigestión en zonas rurales (Tesis pregrado). Universidad Técnica Federico Santa María. | spa |
dc.relation.references | Andrei, A. M., Samuel, N. M. de S., Solles, A. R., Claudinei, de A., Glaucio, J. G., Simoni, S. V., Reginaldo, F. S., & Jair, A. C. S. (2016). Quali-Quantitative study of biogas production from bio-digestion of cutting poultry. African Journal of Agricultural Research, 11(37), 3506–3513. https://doi.org/10.5897/ajar2016.11328 | spa |
dc.relation.references | Angelidaki, Ellegaard, & Ahring. (1999). A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnology and Bioengineering, 63 3, 363–372. | spa |
dc.relation.references | Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. In Biotechnology Advances (Vol. 36, Issue 2). https://doi.org/10.1016/j.biotechadv.2018.01.011 | spa |
dc.relation.references | Aquino Neto, S., Reginatto, V., & De Andrade, A. R. (2018). Microbial Fuel Cells and Wastewater Treatment (C. A. Martínez-Huitle, M. A. Rodrigo, & O. B. T.-E. W. and W. T. Scialdone (eds.)). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-12-813160-2.00012-2 | spa |
dc.relation.references | Batstone, D., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S., Rozzi, A., Sanders, W., Siegrist, H., & Vavilin, V. (2002). Anaerobic digestion model No 1 (ADM1). Water Science and Technology : A Journal of the International Association on Water Pollution Research, 45, 65–73. | spa |
dc.relation.references | Bonechi, C., Consumi, M., Donati, A., Leone, G., Magnani, A., Tamasi, G., & Rossi, C. (2017). Biomass: An overview. In F. Dalena, A. Basile, & C. B. T.-B. S. for the F. Rossi (Eds.), Bioenergy Systems for the Future (pp. 3–42). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-101031-0.00001-6 | spa |
dc.relation.references | Capurro Navarro, C. M. (2018). OPTIMIZACIÓN DE LA PRODUCCIÓN DE METANO A PARTIR DE LOS RESIDUOS CERVECEROS GENERADOS EN LA CERVECERÍA BARRANCO BEER COMPANY (Tesis de pregrado). Universidad Científica del Sur. | spa |
dc.relation.references | Carneiro, R. B., Gonzalez-Gil, L., Londoño, Y. A., Zaiat, M., Carballa, M., & Lema, J. M. (2020). Acidogenesis is a key step in the anaerobic biotransformation of organic micropollutants. Journal of Hazardous Materials, 389. https://doi.org/10.1016/j.jhazmat.2019.121888 | spa |
dc.relation.references | Caruana, D. J., & Olsen, A. E. (2012). Anaerobic Digestion: Processes, Products, and Applications. Nova Science Publishers. | spa |
dc.relation.references | Comino, E., Riggio, V. A., & Rosso, M. (2012). Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresource Technology, 114, 46–53. https://doi.org/10.1016/J.BIORTECH.2012.02.090 | spa |
dc.relation.references | Corona Zuñiga, I. (2007). Biodigestores. | spa |
dc.relation.references | Deng, L., Liu, Y., & Wang, W. (2020). Biogas Technology. Springer Singapore. | spa |
dc.relation.references | Diz Cruz, E. (2016). Estadística básica, introducción a la estadística con R (Ediciones de la U (ed.); 1st ed.). https://www.ebooks7-24.com:443/?il=5741 | spa |
dc.relation.references | Faverín, C., Gratton, R., & Machado, C. F. (2014). Emisiones de gases de efecto invernadero en sistemas de producción de carne vacuna de base pastoril. Revisión bibliográfica. Revista Argentina de Producción Animal, 34(1), 33–54. | spa |
dc.relation.references | Fernandez-Gonzalez, N., Pedizzi, C., Lema, J. M., & Carballa, M. (2019). Air-side ammonia stripping coupled to anaerobic digestion indirectly impacts anaerobic microbiome. Microbial Biotechnology, 12(6), 1403–1416. https://doi.org/10.1111/1751-7915.13482 | spa |
dc.relation.references | Ferré, J. (2009). 3.02 - Regression Diagnostics (S. D. Brown, R. Tauler, & B. B. T.-C. C. Walczak (eds.); pp. 33–89). Elsevier. https://doi.org/https://doi.org/10.1016/B978-044452701-1.00076-4 | spa |
dc.relation.references | Hengeveld, E. J., van Gemert, W. J. T., Bekkering, J., & Broekhuis, A. A. (2014). When does decentralized production of biogas and centralized upgrading and injection into the natural gas grid make sense? Biomass and Bioenergy, 67, 363–371. https://doi.org/10.1016/J.BIOMBIOE.2014.05.017 | spa |
dc.relation.references | Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244–260. https://doi.org/10.1016/j.cattod.2008.08.039 | spa |
dc.relation.references | Juan pablo Rojas Sossa. (2015). Evaluación de la producción de biogas por medio de la biodigestión anaerobia semicontinua utilizando residuos del beneficiado de cafe como sustrato (tesis de pregrado). Universidad de Costa Rica. | spa |
dc.relation.references | Kavacik, B., & Topaloglu, B. (2010). Biogas production from co-digestion of a mixture of cheese whey and dairy manure. Biomass and Bioenergy, 34(9), 1321–1329. https://doi.org/10.1016/j.biombioe.2010.04.006 | spa |
dc.relation.references | Lamb, J. J. (2020). Anaerobic Digestion: From Biomass to Biogas. Scio Publishing. | spa |
dc.relation.references | Lin, Q., De Vrieze, J., Li, J., & Li, X. (2016). Temperature affects microbial abundance, activity and interactions in anaerobic digestion. Bioresource Technology, 209, 228–236. https://doi.org/10.1016/j.biortech.2016.02.132 | spa |
dc.relation.references | Nelson, V., & Starcher, K. (2017). Introduction to Bioenergy (C. Press (ed.)). | spa |
dc.relation.references | Nkodi, T. M., Taba, K. M., Kayembe, S., Mulaji, C., & Mihigo, S. (2016). Biogas Production by Co-Digestion of Cassava Peels with Urea. International Journal of Scientific Engineering and Technology, 5(3), 139–141. | spa |
dc.relation.references | Okoroigwe, E. C., Ibeto, C. N., & Ezema, C. G. (2014). Experimental study of anaerobic digestion of dog waste. Scientific Research and Essays, 9(6). https://doi.org/10.5897/sre2013.5705 | spa |
dc.relation.references | Ozturk, B. (2012). Evaluation of Biogas Production Yields of Different Waste Materials. Earth Science Research, 2(1), 165–174. https://doi.org/10.5539/esr.v2n1p165 | spa |
dc.relation.references | Panichnumsin, P., Nopharatana, A., Ahring, B., & Chaiprasert, P. (2010). Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass and Bioenergy, 34(8). https://doi.org/10.1016/j.biombioe.2010.02.018 | spa |
dc.relation.references | Pannucharoenwong, N., Rattanadecho, P., Timchenko, V., & Echaroj, S. (2019). INVESTIGATION OF DIFFERENT IMPELLER CONFIGURATION ON ANAEROBIC CO-DIGESTION OF MANURE AND ORGANIC WASTE FOR BIO-METHANE PRODUCTION. 27(3). | spa |
dc.relation.references | Rajendran, K., Kankanala, H. R., Lundin, M., & Taherzadeh, M. J. (2014). A novel process simulation model (PSM) for anaerobic digestion using Aspen Plus. Bioresource Technology, 168. https://doi.org/10.1016/j.biortech.2014.01.051 | spa |
dc.relation.references | Recebli, Z., Selimli, S., Ozkaymak, M., & Gonc, O. (2015). Biogas production from animal manure. Journal of Engineering Science and Technology, 10(6). https://doi.org/10.1016/j.proeps.2015.08.144 | spa |
dc.relation.references | Sebastián Nogués, F., García-Galindo, D., & Rezeau, A. (2010). Energía de la biomasa. Volumen II (Prensas universitarias de Zaragoza (ed.)). | spa |
dc.relation.references | Siami, S., Aminzadeh, B., Karimi, R., & Hallaji, S. M. (2020). Process optimization and effect of thermal, alkaline, H2O2 oxidation and combination pretreatment of sewage sludge on solubilization and anaerobic digestion. BMC Biotechnology, 20(1), 1–13. https://doi.org/10.1186/s12896-020-00614-1 | spa |
dc.relation.references | Soporte Minntab. (2019). Tabla de Análisis de varianza de ANOVA de un solo factor. https://support.minitab.com/es-mx/minitab/18/help-and-how-to/modeling-statistics/anova/how-to/one-way-anova/interpret-the-results/all-statistics-and-graphs/analysis-of-variance/ | spa |
dc.relation.references | Tobon Abello, A. H. (2018). Analisis De Los Posibles Factores Que Dificultan La Implementacion De Biodigestores Tipo Tubular Y Cupula Flotante En Las Zonas Rurales Y Urbanas De La Region Norte De Colombia (tesis de pregrado). Universidad Del Norte. | spa |
dc.relation.references | Triola, M. (2013). Estadística (11th ed.). Pearson Educación. | spa |
dc.relation.references | Turpeinen, E., Raudaskoski, R., Pongrácz, E., & Keiski, R. L. (2008). Thermodynamic analysis of conversion of alternative hydrocarbon-based feedstocks to hydrogen. International Journal of Hydrogen Energy, 33(22). https://doi.org/10.1016/j.ijhydene.2008.08.037 | spa |
dc.relation.references | United Nations, Department of Economic and Social Affairs, P. D. (2017). World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. | spa |
dc.relation.references | UPME. (n.d.). ″Atlas″ . In Mar Eng Nav Architect (Vol. 95, Issue 1155). | spa |
dc.relation.references | Varnero Moreno, M. T. (2011). Manual del Biogás. Organización de las Naciones Unidas para la Agricultura y la Alimentación. | spa |
dc.relation.references | Vico, A., & Artemio, N. (2017). Biogas : Production, Applications and Global Developments. Nova Science Publishers, Inc. http://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=1652552&lang=es&site=ehost-live | spa |
dc.relation.references | Wang, G., Dai, X., Zhang, D., He, Q., Dong, B., Li, N., & Ye, N. (2018). Two-phase high solid anaerobic digestion with dewatered sludge: Improved volatile solid degradation and specific methane generation by temperature and pH regulation. Bioresource Technology, 259(March), 253–258. https://doi.org/10.1016/j.biortech.2018.03.074 | spa |
dc.relation.references | Wintsche, B., Glaser, K., Sträuber, H., Centler, F., Liebetrau, J., Harms, H., & Kleinsteuber, S. (2016). Trace Elements Induce Predominance among Methanogenic Activity in Anaerobic Digestion. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.02034 | spa |
dc.relation.references | Zhang, Z., Zhang, G., Li, W., Li, C., & Xu, G. (2016). Enhanced biogas production from sorghum stem by co-digestion with cow manure. International Journal of Hydrogen Energy, 41(21). https://doi.org/10.1016/j.ijhydene.2016.02.042 | spa |
dc.rights | Derechos Reservados - Universidad ECCI, 2020 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.subject.proposal | Biomasa | spa |
dc.subject.proposal | Digestión Anaerobia | spa |
dc.subject.proposal | Simulación | spa |
dc.subject.proposal | Biomass | eng |
dc.subject.proposal | Anaerobic Digestion | eng |
dc.subject.proposal | Simulation | eng |
dc.title | Simulación computacional del proceso de digestión anaerobia de biomasa | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/updatedVersion | spa |
dspace.entity.type | Publication |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- Trabajo de grado.pdf
- Size:
- 3.6 MB
- Format:
- Adobe Portable Document Format
- Description:
- Articulo principal
Loading...

- Name:
- Cesión de derechos.pdf
- Size:
- 790.59 KB
- Format:
- Adobe Portable Document Format
- Description:
Loading...

- Name:
- Acta de opción de Grado.pdf
- Size:
- 158.51 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
Loading...

- Name:
- license.txt
- Size:
- 14.45 KB
- Format:
- Item-specific license agreed upon to submission
- Description: