Este ítem es privado
Publicación: Análisis Fluido Dinámico Computacional de un mezclador estático para combustible de aviación JET A-1 y Biodiesel
dc.contributor.advisor | Bayona Roa, Camilo | |
dc.contributor.advisor | González Caranton, Alberth Renne | |
dc.contributor.author | Orellano Lasprilla, Jose Luis | |
dc.contributor.researchgroup | GIATME | spa |
dc.date.accessioned | 2023-07-05T14:01:09Z | |
dc.date.available | 2023-07-05T14:01:09Z | |
dc.date.issued | 2023 | |
dc.description.abstract | El uso de combustibles fósiles en la aeronáutica contribuye al 30% de las emisiones globales de gases de efecto invernadero. Para reducir la contaminación, se debe evaluar el uso de biocombustibles como aditivos en mezclas con JET A-1. Sin embargo, el proceso de mezclado tradicional no es apropiado debido a la posible formación de ceras y la precipitación de elementos. Por lo tanto, se propone un sistema continuo de mezclado estático para encontrar el mejor arreglo en mezclas de JET-A1 y Biodiesel. Los mezcladores estáticos son económicos y se utilizan comúnmente en la industria. En este trabajo, se estudiaron diferentes tipos de mezcladores y técnicas de evaluación para encontrar el arreglo óptimo en condiciones de flujo turbulento. En esta investigación, se empleó la Dinámica de Fluidos Computacional (CFD, por sus siglas en inglés) para identificar el tipo de mezclador ideal para llevar a cabo el proceso de mezclado. Se utilizaron herramientas de análisis, como FENICS® y ANSYS Fluent®, para evaluar cada una de las alternativas propuestas. Primero, se analizó la geometría en 2D y 3D de un mezclador estático, a partir de las condiciones de contorno y de la geometría de los álabes, el diámetro y longitud del tubo y la composición de los combustibles puros a la entrada. Se evaluó el comportamiento fluidodinámico mediante el análisis de momento, transferencia de calor y masa, verificando el grado de homogeneización de la mezcla obtenida a la salida del mezclador estático. Se cuantificó la caída de presión generada y se utilizó un parámetro adimensional llamado el Número J, como indicador del grado de homogeneización de la mezcla final resultante. | spa |
dc.description.abstract | The use of fossil fuels in aeronautics contributes to 30% of global greenhouse gas emissions. To reduce contamination, the use of biofuels as additives in blends with JETA-1 should be evaluated. However, the traditional mixing process is not suitable due to the possible formation of waxes and the precipitation of elements. Therefore, a continuous static mixing system is proposed to find the best arrangement in mixtures of JET-A1 and Biodiesel. Static mixers are inexpensive and are used in industry. In this work, different types of mixers and evaluation techniques were studied to find the optimal arrangement under turbulent flow conditions. In this investigation, Computational Fluid Dynamics (CFD) was used to identify the ideal type of mixer to carry out the mixing process. Analysis tools, such as FENICS® and ANSYS Fluent®, were used to evaluate each of the proposed alternatives. First, the 2D and 3D geometry of a static mixer was analyzed, based on the boundary conditions and the geometry of the blades, the diameter and length of the tube, and the composition of the pure fuels at the inlet. The fluid dynamic behavior was evaluated through the analysis of momentum, heat and mass transfer, verifying the degree of homogenization of the mixture obtained at the outlet of the static mixer. The pressure drop generated was quantified and a dimensionless parameter called the J number was used as an indicator of the degree of homogenization of the resulting final mixture. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniero | spa |
dc.description.program | Maestría en Ingeniería | spa |
dc.description.researcharea | Energía y Transporte | spa |
dc.description.tableofcontents | Lista de Tablas 9 Lista de Figuras 10 Lista de Anexos 12 Símbolos y Abreviaturas 13 Título 15 Resumen 15 Palabras claves 15 Abstract 16 Keywords 16 1 Introducción 17 2 Problema De Investigación 19 2.1 Descripción del Problema 19 2.2 Formulación del Problema 19 3 Objetivos 20 3.1 Objetivo General 20 3.2 Objetivos Específicos 20 4 Justificación y Delimitación 21 4.1 Justificación 21 4.2 Delimitación 22 4.3 Alcance 23 5 Marco De Referencia 24 5.1 Estado del Arte 24 5.1.1 Mezclado Convencional 24 5.1.2 Mezcladores Estáticos 24 5.1.3 Evaluación Experimental del Grado de Mezclado 29 5.1.4 Antecedentes 31 5.2 Marco Teórico 32 5.2.1 Ecuaciones Gobernantes de los Fenómenos de Transporte 32 5.2.2 Reglas de Mezclado 33 5.2.3 Relación de Difusividad de Masa 35 5.2.4 Coeficiente de Variación 35 5.2.5 Caída de Presión y Factor de Fricción 36 5.2.6 El Número J 37 5.2.7 Resolución de las Ecuaciones Gobernantes Mediante Métodos Computacionales 39 5.2.8 Condiciones Iniciales y de frontera 41 5.2.9 Malla Computacional 42 5.2.10 Métodos Numéricos 47 5.2.11 La Turbulencia 50 6 Marco Metodológico de la Investigación 52 6.1 Paradigma 52 6.2 Método 52 6.2.1 Fases de la Investigación 53 7 Resultados y Discusión 66 7.1 Resultados - Modelo Bidimensional 66 7.2 Resultados - Modelo Tridimensional 72 7.2.1 Resultados Tubería Vacía 72 7.2.2 Resultados Mezclador HEV 84 7.2.3 Resultados mezclador KB 96 7.2.4 Resultados Mezclador KM 109 7.2.5 Criterios de Selección 121 8 Conclusiones y recomendaciones 125 9 Referencias 127 10 Anexos 139 | spa |
dc.format.extent | 146 p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Orellano, J. (2023). Análisis Fluido Dinámico Computacional de un Mezclador Estático para Combustible de Aviación JET A-1 y Biodiesel [Proyecto de Grado para optar a Magíster en Ingeniería]. Universidad ECCI. | spa |
dc.identifier.uri | https://repositorio.ecci.edu.co/handle/001/3472 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad ECCI | spa |
dc.publisher.faculty | Posgrados | spa |
dc.publisher.place | Bogotá DC | spa |
dc.relation.references | [1] Ministerio de Ambiente y Desarrollo Sostenible, “Plan de Acción para la Gestión Sostenible de la Biomasa Residual”, Mesa Nacional de Biomasa Residual, mar. 2022. | spa |
dc.relation.references | [2] R. M. El-Maghraby, “A study on bio-diesel and jet fuel blending for the production of renewable aviation fuel”, Materials Science Forum, vol. 1008 MSF, pp. 231–244, 2020, doi: 10.4028/WWW.SCIENTIFIC.NET/MSF.1008.231. | spa |
dc.relation.references | [3] M. Unglert et al., “Action areas and the need for research in biofuels”, Fuel, vol. 268, p. 117227, may 2020, doi: 10.1016/j.fuel.2020.117227. | spa |
dc.relation.references | [4] G. Talero et al., “Experimental methodology and facility for the J69-engine performance and emissions evaluation using jet A1 and biodiesel blends”, Energies (Basel), vol. 12, núm. 23, 2019, doi: 10.3390/en12234530. | spa |
dc.relation.references | [5] G. Talero, C. Bayona-Roa, V. Silva, M. Mayorga, J. Pava, y M. Lopez, “Biodiesel substitution in a J69 aeronautic turbine engine: An experimental assessment of the effects on energy efficiency, technical performance and emissions”, Sustainable Energy Technologies and Assessments, vol. 40, p. 100746, ago. 2020, doi: 10.1016/j.seta.2020.100746. | spa |
dc.relation.references | [6] A. R. Gonzalez Caranton et al., “Experimental Investigation of the Mechanical and Thermal Behavior of a PT6A-61A Engine Using Mixtures of JETA-1 and Biodiesel”, Energies 2021, Vol. 14, Page 3282, vol. 14, núm. 11, p. 3282, jun. 2021, doi: 10.3390/EN14113282. | spa |
dc.relation.references | [7] O. Giussani, “Ansys Fluent Helps Aeronautica Militare’s Testing Campaigns Take Flight”, ANSYS BLOG, el 21 de abril de 2021. https://www.ansys.com/blog/ansys-fluent-helps-aeronautica-militares-testing-campaigns-take-flight (consultado el 20 de marzo de 2022). | spa |
dc.relation.references | [8] P. Colombo, “6 Simulation Technologies Aerospace Engineers Don’t Want to Miss | Ansys”, ANSYS BLOG, el 28 de diciembre de 2018. https://www.ansys.com/blog/simulation-techonogy-aerospace-engineers-aiaa (consultado el 30 de enero de 2022). | spa |
dc.relation.references | [9] J. Xaman y M. Gijon-Rivera, Dinámica de Fluidos Computacional Para Ingenieros, 1a ed. Palibrio, 2016. [En línea]. Disponible en: Texto fuente | spa |
dc.relation.references | [10] T. Palucka, “Red Bull Racing Honda Challenged for first place in the 2021 Formula 1 Constructor’s Championship”, ANSYS BLOG, el 15 de diciembre de 2021. https://www.ansys.com/blog/red-bull-racing-honda-challenges-for-first-place-in-the-2021-formula-1-constructors-championship-with-the-help-of-ansys-engineering-simulations (consultado el 30 de enero de 2022). | spa |
dc.relation.references | [11] B. Holmes, “How to Improve Compressor Efficiency with Design Optimization | Ansys”, ANSYS BLOG, el 17 de septiembre de 2020. https://www.ansys.com/blog/how-to-improve-compressor-efficiency (consultado el 20 de marzo de 2022). | spa |
dc.relation.references | [12] K. Georgieva-Angelova, “GEA Looks to Ansys Fluent to Optimize Virtual Spray Drying Testing”, ANSYS BLOG, el 24 de diciembre de 2021. https://www.ansys.com/blog/gea-looks-to-ansys-fluent-to-optimize-virtual-spray-drying-testing (consultado el 20 de marzo de 2022). | spa |
dc.relation.references | [13] F. Moukalled, L. Mangani, y M. Darwish, The Finite Volume Method in Computational Fluid Dynamics, vol. 113. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-16874-6. | spa |
dc.relation.references | [14] S. Dixit, A. Kumar, S. Kumar, N. Waghmare, H. C. Thaku, y S. Khan, “CFD analysis of biodiesel blends and combustion using Ansys Fluent”, Mater Today Proc, vol. 26, pp. 665–670, ene. 2019, doi: 10.1016/j.matpr.2019.12.362. | spa |
dc.relation.references | [15] I. Abrantes, A. F. Ferreira, A. Silva, y M. Costa, “Sustainable aviation fuels and imminent technologies - CO2 emissions evolution towards 2050”, J Clean Prod, vol. 313, p. 127937, sep. 2021, doi: 10.1016/J.JCLEPRO.2021.127937. | spa |
dc.relation.references | [16] N. Allif Fathurrahman, M. Nasikin, Y. Yulizar, y M. Khalil, “Thermodynamic study on the prevention of B30 biodiesel wax crystallization by γ-Al2O3 nanoparticles and sorbitan monooleate”, Fuel, vol. 314, p. 123144, abr. 2022, doi: 10.1016/J.FUEL.2022.123144. | spa |
dc.relation.references | [17] F. L. Mota, S. Teychéne, y B. Biscans, “Measurement of the Nucleation and Growth Kinetics of Some Middle Distillate Fuels and Their Blends with a Model Biodiesel Fuel”, Ind Eng Chem Res, vol. 53, núm. 7, pp. 2811–2819, feb. 2014, doi: 10.1021/IE402984P. | spa |
dc.relation.references | [18] “Amber-fluid.jpg (Imagen JPEG, 1000 × 667 píxeles)”, 2018. https://www.kmtlabs.com/wp-content/uploads/2018/02/Amber-fluid.jpg (consultado el 15 de marzo de 2022). | spa |
dc.relation.references | [19] H. Meng, X. Jiang, Y. Yu, Z. Wang, y J. Wu, “Laminar flow and chaotic advection mixing performance in a static mixer with perforated helical segments”, Korean Journal of Chemical Engineering, vol. 34, núm. 5, pp. 1328–1336, may 2017, doi: 10.1007/s11814-017-0035-z. | spa |
dc.relation.references | [20] P. E. Laranjeira, A. A. Martins, J. C. B. Lopes, y M. M. Dias, “NETmix®, a new type of static mixer: Modeling, simulation, macromixing, and micromixing characterization”, AIChE Journal, vol. 55, núm. 9, pp. 2226–2243, sep. 2009, doi: 10.1002/aic.11815. | spa |
dc.relation.references | [21] J. Derksen, “Turbulent Mixing With Density Differences”, en ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D, ene. 2011, vol. 1, núm. PARTS A-B-C-D, pp. 3717–3725. doi: 10.1115/AJK2011-21002. | spa |
dc.relation.references | [22] C. F. Joaquim, A. Reynol, E. Cekinski, M. M. Seckler, y J. R. Nunhez, “Development of static mixers for miscible fluids in laminar flow with the use of computational fluid dynamics (CFD)”, Can J Chem Eng, vol. 89, núm. 4, pp. 734–744, ago. 2011, doi: 10.1002/cjce.20521. | spa |
dc.relation.references | [23] M. M. Haddadi, S. H. Hosseini, D. Rashtchian, y M. Olazar, “Comparative analysis of different static mixers performance by CFD technique: An innovative mixer”, Chin J Chem Eng, vol. 28, núm. 3, pp. 672–684, mar. 2020, doi: 10.1016/j.cjche.2019.09.004. | spa |
dc.relation.references | [24] M. Al-Atabi, “Design and assessment of a novel static mixer”, Canadian Journal of Chemical Engineering, vol. 89, núm. 3, pp. 550–554, jun. 2011, doi: 10.1002/cjce.20412. | spa |
dc.relation.references | [25] F. Alberini, M. J. H. Simmons, A. Ingram, y E. H. Stitt, “Assessment of different methods of analysis to characterise the mixing of shear-thinning fluids in a Kenics KM static mixer using PLIF”, Chem Eng Sci, vol. 112, pp. 152–169, jun. 2014, doi: 10.1016/j.ces.2014.03.022. | spa |
dc.relation.references | [26] V. Lim, A. M. Hobby, M. J. McCarthy, y K. L. McCarthy, “Laminar mixing of miscible fluids in a SMX mixer evaluated by magnetic resonance imaging (MRI)”, Chem Eng Sci, vol. 137, pp. 1024–1033, dic. 2015, doi: 10.1016/j.ces.2015.07.003. | spa |
dc.relation.references | [27] R. K. Rahmani, A. Ayasoufi, y T. G. Keith, “A Numerical Study of the Global Performance of Two Static Mixers”, J Fluids Eng, vol. 129, núm. 3, pp. 338–349, mar. 2007, doi: 10.1115/1.2427082. | spa |
dc.relation.references | [28] R. Gatehous, “Bioreactor Fed-batch Culture Turbidostat Chemical Reactor Chemostat PNG, Clipart, Anaerobic Organism, Angle, Area, Batch Reactor, Bioreactor Free PNG Download”, el 28 de febrero de 2018. https://imgbin.com/png/q0C0au4p/bioreactor-fed-batch-culture-turbidostat-chemical-reactor-chemostat-png (consultado el 20 de marzo de 2022). | spa |
dc.relation.references | [29] S. S. Soman y C. M. R. Madhuranthakam, “Effects of internal geometry modifications on the dispersive and distributive mixing in static mixers”, Chemical Engineering and Processing: Process Intensification, vol. 122, pp. 31–43, dic. 2017, doi: 10.1016/j.cep.2017.10.001. | spa |
dc.relation.references | [30] A. G. Mukhametzyanova y K. A. Alekseev, “General Principles for the Construction of a System of Computer-Aided Design of Static Mixers”, Chemical and Petroleum Engineering, vol. 50, núm. 1–2, pp. 47–49, 2014, doi: 10.1007/s10556-014-9853-6. | spa |
dc.relation.references | [31] M. M. Haddadi, S. H. Hosseini, D. Rashtchian, y G. Ahmadi, “CFD modeling of immiscible liquids turbulent dispersion in Kenics static mixers: Focusing on droplet behavior”, Chin J Chem Eng, vol. 28, núm. 2, pp. 348–361, feb. 2020, doi: 10.1016/j.cjche.2019.07.020. | spa |
dc.relation.references | [32] P. Alexias y K. C. Giannakoglou, “Shape Optimization of a Two-Fluid Mixing Device Using Continuous Adjoint”, Fluids, vol. 5, núm. 1, p. 11, ene. 2020, doi: 10.3390/fluids5010011. | spa |
dc.relation.references | [33] A. Paglianti, “Recent Innovations in Turbulent Mixing with Static Elements”, Recent Patents on Chemical Engineeringe, vol. 1, núm. 1, pp. 80–87, ene. 2008, doi: 10.2174/2211334710801010080. | spa |
dc.relation.references | [34] N. Mochizuki, A. Kaide, y T. Saeki, “Quantitative Evaluation of Mixing Characteristics of Static Mixers by Visualization Experiments”, Journal of Flow Control, Measurement & Visualization, vol. 06, núm. 01, pp. 27–38, dic. 2018, doi: 10.4236/jfcmv.2018.61003. | spa |
dc.relation.references | [35] K. Adnan, “Optimization of 2K-mixer for Paint”, Universitetet i Stavanger, 2019. | spa |
dc.relation.references | [36] H. Medina, M. Thomas, T. Eldredge, y A. Adebanjo, “The M Number: A Novel Parameter to Evaluate the Performance of Static Mixers”, J Fluids Eng, vol. 141, núm. 12, pp. 1–10, dic. 2019, doi: 10.1115/1.4044070. | spa |
dc.relation.references | [37] S. M. Hosseini, K. Razzaghi, y F. Shahraki, “Design and characterization of a Low-pressure-drop static mixer”, AIChE Journal, vol. 65, núm. 3, pp. 1126–1133, mar. 2019, doi: 10.1002/aic.16505. | spa |
dc.relation.references | [38] M. K. Singh, T. G. Kang, P. D. Anderson, H. E. H. Meijer, y A. N. Hrymak, “Analysis and optimization of low-pressure drop static mixers”, AIChE Journal, vol. 55, núm. 9, pp. 2208–2216, sep. 2009, doi: 10.1002/aic.11846. | spa |
dc.relation.references | [39] M. R. Mahmud, V. Viktorov, y C. Visconte, “Computational Design and Experimental Validation of SAR Mixers”, en 2016 The 3rd International Conference on Manufacturing and Industrial Technologies, ago. 2016, vol. 70, p. 5. doi: 10.1051/matecconf/20167003007. | spa |
dc.relation.references | [40] G. Montante, M. Coroneo, y A. Paglianti, “Blending of miscible liquids with different densities and viscosities in static mixers”, Chem Eng Sci, vol. 141, pp. 250–260, feb. 2016, doi: 10.1016/j.ces.2015.11.009. | spa |
dc.relation.references | [41] V. Abdolkarimi y H. Ganji, “CFD modeling of two immiscible fluids mixing in a commercial scale static mixer”, Brazilian Journal of Chemical Engineering, vol. 31, núm. 4, pp. 949–957, dic. 2014, doi: 10.1590/0104-6632.20140314s00002857. | spa |
dc.relation.references | [42] M. Coroneo, G. Montante, y A. Paglianti, “Computational fluid dynamics modeling of corrugated static mixers for turbulent applications”, Ind Eng Chem Res, vol. 51, núm. 49, pp. 15986–15996, dic. 2012, doi: 10.1021/ie300398z. | spa |
dc.relation.references | [43] M. Zhou, D. Bai, Y. Zong, L. Zhao, y J. N. Thornock, “Numerical investigation of turbulent reactive mixing in a novel coaxial jet static mixer”, Chemical Engineering and Processing: Process Intensification, vol. 122, pp. 190–203, dic. 2017, doi: 10.1016/j.cep.2017.09.017. | spa |
dc.relation.references | [44] H. Meng, M. Han, Y. Yu, Z. Wang, y J. Wu, “Numerical evaluations on the characteristics of turbulent flow and heat transfer in the Lightnin static mixer”, Int J Heat Mass Transf, vol. 156, p. 119788, ago. 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119788. | spa |
dc.relation.references | [45] A. Paglianti y G. Montante, “A mechanistic model for pressure drops in corrugated plates static mixers”, Chem Eng Sci, vol. 97, pp. 376–384, jun. 2013, doi: 10.1016/j.ces.2013.04.042. | spa |
dc.relation.references | [46] T. Hanada, K. Kuroda, y K. Takahashi, “CFD geometrical optimization to improve mixing performance of axial mixer”, Chem Eng Sci, vol. 144, pp. 144–152, abr. 2016, doi: 10.1016/j.ces.2016.01.029. | spa |
dc.relation.references | [47] O. Mihailova, V. Lim, M. J. McCarthy, K. L. McCarthy, y S. Bakalis, “Laminar mixing in a SMX static mixer evaluated by positron emission particle tracking (PEPT) and magnetic resonance imaging (MRI)”, Chem Eng Sci, vol. 137, pp. 1014–1023, dic. 2015, doi: 10.1016/j.ces.2015.07.015. | spa |
dc.relation.references | [48] Koflo Corporation, “Custom Stainless Steel Static Mixer - Metal Static Mixer | Koflo Corporation”. https://www.koflo.com/static-mixers/custom-static-mixers/custom-stainless-steel-metal-alloy-static-mixers/ (consultado el 20 de marzo de 2022). | spa |
dc.relation.references | [49] Stamixco, “StaMixCo - Static Mixing, Reaction & Heat Transfer Technology”. http://stamixco-mex.com/english.htm (consultado el 20 de marzo de 2022). | spa |
dc.relation.references | [50] Sulzer, “Mixing and Reaction Technology Pace Setting Technology”. | spa |
dc.relation.references | [51] National Oilwell Varco, “Kenics Static Mixer Technology”. NOV, Houston, p. 12, 2015. | spa |
dc.relation.references | [52] Chemineer, “Kenics HEV High Efficiency Static Mixer”. NOV, p. 2, 2013. | spa |
dc.relation.references | [53] M. Stec y P. M. Synowiec, “Study of fluid dynamic conditions in the selected static mixers part II-determination of the residence time distribution”, Canadian Journal of Chemical Engineering, vol. 95, núm. 12, pp. 2410–2422, dic. 2017, doi: 10.1002/cjce.22879. | spa |
dc.relation.references | [54] Primix, “Static mixer – from stock | Standardized variants”, 2022. https://www.primix.com/products/static-mixers-from-stock.html (consultado el 21 de marzo de 2022). | spa |
dc.relation.references | [55] Koflo Corporation, “Static Mixer - Static Inline Mixers - Motionless Mixer | Koflo Corporation”, 2022. https://www.koflo.com/static-mixers.html (consultado el 21 de marzo de 2022). | spa |
dc.relation.references | [56] Southwest Research Institute, “Advanced Flow Visualization | Southwest Research Institute”, 2022. https://www.swri.org/industry/fluids-engineering/advanced-flow-visualization (consultado el 20 de marzo de 2022). | spa |
dc.relation.references | [57] Y. A. Cengel y J. M. Cimbala, Mecanica de Fluidos Fundamentos y Aplicaciones, 4a ed. McGraw-Hill, 2018. [En línea]. Disponible en: Texto fisico | spa |
dc.relation.references | [58] R. B. Bird, W. E. Stewart, y E. N. Ligthfoot, Fenomenos de Transporte, 2a ed. Limusa Wiley, 2014. [En línea]. Disponible en: Texto fisico | spa |
dc.relation.references | [59] Diplomados Online, “CFD: un paradigma de la ingeniería para estudiar problemas de la Mecánica de Fluidos - YouTube”, el 27 de junio de 2019. https://www.youtube.com/watch?v=EysDZH62ccs (consultado el 1 de marzo de 2022). | spa |
dc.relation.references | [60] A. Kukukova, B. Noel, S. M. Kresta, y J. Aubin, “Impact of sampling method and scale on the measurement of mixing and the coefficient of variance”, AIChE Journal, vol. 54, núm. 12, pp. 3068–3083, dic. 2008, doi: 10.1002/aic.11639. | spa |
dc.relation.references | [61] J. Ramsay, M. J. H. Simmons, A. Ingram, y E. H. Stitt, “Mixing performance of viscoelastic fluids in a Kenics KM in-line static mixer”, Chemical Engineering Research and Design, vol. 115, pp. 310–324, nov. 2016, doi: 10.1016/j.cherd.2016.07.020. | spa |
dc.relation.references | [62] F. Alberini, M. J. H. Simmons, A. Ingram, y E. H. Stitt, “Use of an areal distribution of mixing intensity to describe blending of non-newtonian fluids in a kenics KM static mixer using PLIF”, AIChE Journal, vol. 60, núm. 1, pp. 332–342, ene. 2014, doi: 10.1002/aic.14237. | spa |
dc.relation.references | [63] V. Kumar, V. Shirke, y K. D. P. Nigam, “Performance of Kenics static mixer over a wide range of Reynolds number”, Chemical Engineering Journal, vol. 139, núm. 2, pp. 284–295, jun. 2008, doi: 10.1016/j.cej.2007.07.101. | spa |
dc.relation.references | [64] J. M. Zalc, E. S. Szalai, F. J. Muzzio, y S. Jaffer, “Characterization of flow and mixing in an SMX static mixer”, AIChE Journal, vol. 48, núm. 3, pp. 427–436, mar. 2002, doi: 10.1002/aic.690480303. | spa |
dc.relation.references | [65] C. BELHOUT, M. BOUZIT, B. MENACER, Y. KAMLA, y H. AMEUR, “Numerical Study of Viscous Fluid Flows in a Kenics Static Mixer”, Mechanics, vol. 26, núm. 3, pp. 206–211, 2020, doi: 10.5755/j01.mech.26.3.24160. | spa |
dc.relation.references | [66] F. Yuan, Z. Cui, y J. Lin, “Experimental and numerical study on flow resistance and bubble transport in a helical static mixer”, Energies (Basel), vol. 13, núm. 5, p. 1228, mar. 2020, doi: 10.3390/en13051228 | spa |
dc.relation.references | [67] T. Kajishima y K. Taira, Computational Fluid Dynamics: Incompressible Turbulent Flows. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-45304-0. | spa |
dc.relation.references | [68] C. Chan, “Moffitt Keeps Manufacturing Plants Cool Using Ansys Simulation”, ANSYS BLOG, el 24 de mayo de 2021. https://www.ansys.com/blog/moffitt-keeps-manufacturing-plants-cool (consultado el 30 de enero de 2022). | spa |
dc.relation.references | [69] W. Schwarz, “How HVAC Simulation Can Improve Safety in Public Spaces | Ansys”, ANSYS BLOG, el 24 de noviembre de 2020. https://www.ansys.com/blog/how-hvac-simulation-can-improve-safety (consultado el 30 de enero de 2022). | spa |
dc.relation.references | [70] D. Geb, “How to Keep Electronic Components Cool with CFD and Thermal Network Modeling | Ansys”, ANSYS BLOG, el 27 de noviembre de 2018. https://www.ansys.com/blog/keep-electronic-components-cool-cfd-thermal-network (consultado el 30 de enero de 2022). | spa |
dc.relation.references | [71] M. Mafi, “Cold Room Design Optimization with Cloud-Based CFD | Free Webinar”, SIMSCALE, 2018. https://www.simscale.com/webinars-workshops/cold-room-design-cfd/ (consultado el 21 de marzo de 2022). | spa |
dc.relation.references | [72] Roush Enterprises, “Roush Computational Fluid Dynamics, Modeling, Simulation Services”, 2021. https://www.roush.com/what-we-do/engineering/cae/cfd/ (consultado el 21 de marzo de 2022). | spa |
dc.relation.references | [73] Ingeniero marino, “Intercambiadores de Calor - Ingeniero Marino”, 2022. https://ingenieromarino.com/intercambiadores-de-calor/ (consultado el 21 de marzo de 2022). | spa |
dc.relation.references | [74] Race Lab, “Race Lab – Tjenester forside.”, 2014. https://www.racelab.no/?page_id=1163 (consultado el 21 de marzo de 2022). | spa |
dc.relation.references | [75] M. H. Aissa, GPU-accelerated CFD Simulations for Turbomachinery Design Optimization. Stutgart, 2018. doi: 10.35294/phdt201801. | spa |
dc.relation.references | [76] Y. Ito, “Challenges in unstructured mesh generation for practical and efficient computational fluid dynamics simulations”, Comput Fluids, vol. 85, pp. 47–52, oct. 2013, doi: 10.1016/j.compfluid.2012.09.031. | spa |
dc.relation.references | [77] I. ANSYS, Ansys Fluent User’s Guide. Canonsburg, 2021. | spa |
dc.relation.references | [78] C. D. Ngoc Chan, “File:Types elements volumiques.svg - Wikimedia Commons”, el 18 de febrero de 2015. https://commons.wikimedia.org/wiki/File:Types_elements_volumiques.svg (consultado el 21 de marzo de 2022). | spa |
dc.relation.references | [79] Alpha Omega Product Development Systems, “How to Calculate Element Quality Criteria in Ansys Meshing, Element Quality - Part 05 - YouTube”, el 17 de julio de 2020. https://www.youtube.com/watch?v=jw7cQZaRTnk (consultado el 22 de enero de 2022). | spa |
dc.relation.references | [80] Alpha Omega Product Development Systems, “How to Calculate Element Quality Criteria in Ansys Meshing, Skewness - Part 03 - YouTube”, el 17 de julio de 2020. https://www.youtube.com/watch?v=WgOMSYGMZfc (consultado el 22 de enero de 2022). | spa |
dc.relation.references | [81] J. F. Wendt et al., Computational Fluid Dynamics: An Introduction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. doi: 10.1007/978-3-540-85056-4. | spa |
dc.relation.references | [82] I. ANSYS, Ansys Fluent Theory Guide, 1a ed. Canonsburg, 2022. | spa |
dc.relation.references | [83] M. Kessler, “Flujo turbulento”, Blog ESSS, el 18 de octubre de 2019. https://www.esss.co/es/blog/flujo-turbulento/ (consultado el 20 de junio de 2022). | spa |
dc.relation.references | [84] F. T. M. Nieuwstadt, B. J. Boersma, y J. Westerweel, Turbulence: Introduction to Theory and Applications of Turbulent Flows, 1a ed. Cham: Springer Cham, 2016. doi: 10.1007/978-3-319-31599-7. | spa |
dc.relation.references | [85] C. Bayona, J. Baiges, y R. Codina, “Variational multiscale approximation of the one-dimensional forced Burgers equation: The role of orthogonal subgrid scales in turbulence modeling”, Int J Numer Methods Fluids, vol. 86, núm. 5, pp. 313–328, feb. 2018, doi: 10.1002/fld.4420. | spa |
dc.relation.references | [86] C. Bayona, J. Baiges, y R. Codina, “Solution of low Mach number aeroacoustic flows using a Variational Multi-Scale finite element formulation of the compressible Navier–Stokes equations written in primitive variables”, Comput Methods Appl Mech Eng, vol. 344, pp. 1073–1103, feb. 2019, doi: 10.1016/j.cma.2018.01.040. | spa |
dc.relation.references | [87] C. Bayona-Roa, R. Codina, y J. Baiges, “Variational multiscale error estimators for the adaptive mesh refinement of compressible flow simulations”, Comput Methods Appl Mech Eng, vol. 337, pp. 501–526, ago. 2018, doi: 10.1016/j.cma.2018.03.010. | spa |
dc.relation.references | [88] R. Codina y J. Blasco, “A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation”, Comput Methods Appl Mech Eng, vol. 143, núm. 3–4, pp. 373–391, abr. 1997, doi: 10.1016/S0045-7825(96)01154-1. | spa |
dc.relation.references | [89] M. S. Alnæs et al., “The FEniCS Project Version 1.5”, The FEniCS Project Version 1.5, vol. 3, núm. 100, pp. 9–23, 2015, doi: 10.11588/ans.2015.100.20553. | spa |
dc.relation.references | [90] S. Abhyankar et al., “PETSc/Tao: Home Page”, PETSc, 2020. https://www.mcs.anl.gov/petsc/index.html (consultado el 8 de octubre de 2020). | spa |
dc.relation.references | [91] S. Gomez Gonzalez, SolidWorks Práctico I, 1a ed. Barcelona: Marcombo, Ediciones Tecnicas, 2012. | spa |
dc.relation.references | [92] S. Gomez Gonzalez, EL Gran Libro de Solidworks, 3a ed. Barcelona: Marcombo, Ediciones Tecnicas, 2019. | spa |
dc.rights | Derechos Reservados - Universidad ECCI, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.proposal | Mezclador estático | spa |
dc.subject.proposal | Fluidodinámica | spa |
dc.subject.proposal | Simulación | spa |
dc.subject.proposal | CFD | spa |
dc.subject.proposal | Biodiésel | spa |
dc.title | Análisis Fluido Dinámico Computacional de un mezclador estático para combustible de aviación JET A-1 y Biodiesel | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_46ec | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/other | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/WP | spa |
dc.type.version | info:eu-repo/semantics/updatedVersion | spa |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 3 de 3
Cargando...

- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 4.08 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...

- Nombre:
- Cesion de Derechos.pdf
- Tamaño:
- 1.25 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...

- Nombre:
- Acta de Opción de Grado.pdf
- Tamaño:
- 466.55 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
Cargando...

- Nombre:
- license.txt
- Tamaño:
- 14.45 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: