Publicación: Desarrollo del componente líquido de ionómero de vidrio a partir del poliácido del ácido acrílico y del ácido sórbico.
dc.contributor.advisor | Castro Pinto, Germán Alfonso | |
dc.contributor.author | Cerón Barrera, Jorge Roberto | |
dc.contributor.author | Saavedra Figueroa, Jhon Jairo | |
dc.contributor.corporatename | Universidad ECCI | spa |
dc.date.accessioned | 2023-01-12T21:47:54Z | |
dc.date.available | 2023-01-12T21:47:54Z | |
dc.date.issued | 2018 | |
dc.description.abstract | El cemento dental de ionómero de vidrio es un material de restauración o calza dental, consta de dos componentes: un sólido que es un vidrio básico y un líquido que es un ácido policarboxílico, en este trabajo se desarrolló un componente líquido; realizando la síntesis y caracterización de un copolímero a partir de un ácido acrílico (AA) y ácido sórbico (AS) y utilizando como iniciador persulfato de amonio. El componente líquido se caracterizó mediante las técnicas cromatografía por exclusión de tamaños (SEC), espectroscopía infrarroja por transformada de Fourier (FTIR) y viscosidad. Posteriormente el componente líquido se mezcló con el componente vidrio de un cemento de ionómero de vidrio comercial marca Fuji II, para verificar sus propiedades mecánicas a compresión y se utilizó la técnica microscopía electrónica de barrido (SEM) para analizar su superficie de fractura. | spa |
dc.description.abstract | Glass ionomer dental cement is a restorative material or dental tracing, it consists of two components: a solid that is a basic glass and a liquid that is a polycarboxylic acid, in this work it is a liquid component; perform the synthesis and characterization of a copolymer of an acrylic acid (AA) and sorbic acid (AS) and use ammonium persulfate as initiator. The liquid component was characterized by the size exclusion (SEC), infrared Fourier transform spectroscopy (FTIR) and viscosity techniques. Subsequently, the liquid component was mixed with the commercial glass ionomer cement glass component of the Fuji II brand, to verify its mechanical properties under compression and the scanning electron microscopy (SEM) technique was used to analyze its fracture surface. | eng |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero en Mecánica | spa |
dc.description.program | Ingeniería Mecánica | spa |
dc.description.tableofcontents | Resumen 5 Abstract 6 Lista de abreviaturas 7 Contenido 8 Lista de imágenes 10 Lista de tablas 11 1.Introducción 12 1.2 Objetivos específicos fueron 13 2. Marco teórico 14 2.1. Generalidades de los polímeros 14 2.2. Monómero 14 2.3. Polímero 14 2.4. Polimerización por adición 14 2.5. Polimerización por radicales libres 14 2.5.2. Propagación 15 2.5.3. Terminación 15 2.6. Cemento ionómero de vidrio (GIC) 15 2.7. Ácido Acrílico (AA) 15 2.8. Ácido Itacónico (AI) 16 2.9. Ácido sórbico (AS) 17 2.10. Ácido carboxílico (AC) 17 2.11. Técnica de destilación al vacío 18 2.12. Técnicas instrumentales de caracterización 18 2.13. Espectroscopia infrarroja por transformada de Fourier (FTIR) 18 2.14. Cromatografía de exclusión por tamaños (SEC) 19 2.15. Viscosidad de polímeros –prueba de reología 19 2.16. Ensayo de compresión 19 2.17. Microscopia electrónica de barrido (SEM) 20 3. Antecedentes 20 4. Procedimiento experimental 21 4.1. Paso 1. Síntesis de copolímeros y poliácido 22 4.2. Paso 2. Deshidratación y purificación del poliácido 26 4.3. Paso 3. Caracterización con FTIR y cromatografía del poliácido y copolímeros. 28 4.4. Paso 4. Mezcla de ionómero de vidrio comercial Fuji II con el componente liquido ionómero de Vidrio 28 4.5. Paso 5. Caracterización del cemento dental con la técnica de viscosidad y prueba de compresión a las propiedades mecánicas 29 4.6. Paso 6. Caracterización del cemento dental utilizando la técnica (SEM) 29 5. Resultados y análisis de los resultados 29 5.1. Caracterización con la técnica (FTIR) del poliácido (AA-AI-AS) sintetizado 29 5.2. Caracterización del poliácido y copolímeros en sus propiedades mecánicas a la resistencia a compresión 34 5.3. Caracterización del cemento dental utilizando la técnica (SEM) 35 5.4. Caracterización del poliácido y copolímeros por medio de la técnica (SEC) 37 5.5. Caracterización de copolímeros y poliácido por medio de la técnica de viscosidad 40 6. Conclusiones 41 7. Bibliografía 43 | spa |
dc.format.extent | 46 p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.ecci.edu.co/handle/001/3212 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad ECCI | spa |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.publisher.place | Colombia | spa |
dc.relation.references | Aaseth, J., Hilt, B., & Bjørklund, G. (2018). Mercury exposure and health impacts in dental personnel. Environmental Research, 164(February), 65–69. https://doi.org/10.1016/j.envres.2018.02.019 | spa |
dc.relation.references | Alatawi, R. A. S., Elsayed, N. H., & Mohamed, W. S. (2018). Influence of hydroxyapatite nanoparticles on the properties of glass ionomer cement. Journal of Materials Research and Technology, (x x), 6–11. https://doi.org/10.1016/j.jmrt.2018.01.010 | spa |
dc.relation.references | Anusha, C., Sankar, R., Varunkumar, K., Sivasindhuja, G., & Ravikumar, V. (2017). Fourier transform-infrared spectroscopy as a diagnostic tool for mosquito coil smoke inhalation toxicity in Swiss Albino mice. Journal of Molecular Structure, 1149, 128–135. https://doi.org/10.1016/j.molstruc.2017.07.087 | spa |
dc.relation.references | Askeland, D. R., & Phulé, P. P. (2004). Ciencia e ingeniería de los materiales. Retrieved from https://books.google.com/books?id=2kpDKWJ7eYIC&pgis=1 | spa |
dc.relation.references | Bates, M. N. (2006). Mercury amalgam dental fillings: An epidemiologic assessment. International Journal of Hygiene and Environmental Health, 209(4), 309–316. https://doi.org/10.1016/j.ijheh.2005.11.006 | spa |
dc.relation.references | Callahan, P. G., Stinville, J. C., Yao, E. R., Echlin, M. P., Titus, M. S., De Graef, M., … Pollock, T. M. (2018). Transmission scanning electron microscopy: Defect observations and image simulations. Ultramicroscopy, 186, 49–61. https://doi.org/10.1016/j.ultramic.2017.11.004 | spa |
dc.relation.references | Chitra, J., Ghosh, M., & Mishra, H. N. (2017). Rapid quantification of cholesterol in dairy powders using Fourier transform near infrared spectroscopy and chemometrics. Food Control, 78, 342–349. https://doi.org/10.1016/j.foodcont.2016.10.008 | spa |
dc.relation.references | Crisp, S., Kent, B. E., Lewis, B. G., Ferner, A. J., & Wilson, A. D. (1980). Glass-ionomer Cement Formulations. II. The Synthesis of NovelPolycarboxylic Acids. J Dent Res, 59(6), 1055–1063. https://doi.org/10.1177/00220345800590060801 | spa |
dc.relation.references | Culbertson, B. M. (2001). Glass-ionomer dental restoratives. Progress in Polymer Science (Oxford), 26(4), 577–604. https://doi.org/10.1016/S0079-6700(01)00006-5 | spa |
dc.relation.references | Dalen, K., Lygre, G. B., Kløve, H., Gjerdet, N. R., & Askevold, E. (2003). Memory functions in persons with dental amalgam. Journal of Dentistry, 31(7), 487–492. https://doi.org/10.1016/S0300-5712(03)00086-1 | spa |
dc.relation.references | Djas, M., & Henczka, M. (2018). Reactive extraction of carboxylic acids using organic solvents and supercritical fluids: A review. Separation and Purification Technology, 201(January), 106–119. https://doi.org/10.1016/j.seppur.2018.02.010 | spa |
dc.relation.references | Ferrand, C., Marc, F., Fritsch, P., & Cassand, P. (2000). Mutagenicity and genotoxicity of sorbic acid ± amine reaction products, 14, 423–428. | spa |
dc.relation.references | Fred W.Billmeyer, J. (2004). ciencia de los polímeros. (Reverté S:A, Ed.) (primera). Barcelona, España. Retrieved from https://books.google.es/books?hl=es&lr=&id=vL9QrpOKsQcC&oi=fnd&pg=PA1&dq=rela ted:77mSagbTbcgJ:scholar.google.com/&ots=yxLv8fvkEj&sig=LjNHxlzTndN1KY1JD rtbFrltoY#v=onepage&q&f=fals | spa |
dc.relation.references | Gratzl, G., Paulik, C., Hild, S., Guggenbichler, J. P., & Lackner, M. (2014). Antimicrobial activity of poly(acrylic acid) block copolymers. Materials Science and Engineering C, 38(1), 94–100. https://doi.org/10.1016/j.msec.2014.01.050 | spa |
dc.relation.references | Gude, M., Schirner, R., Weck, D., Dohmen, E., & Andrich, M. (2016). Through-thickness compression testing of fabric reinforced composite materials: Adapted design of novel compression stamps. Polymer Testing, 56, 269–276. https://doi.org/10.1016/j.polymertesting.2016.10.024 | spa |
dc.relation.references | Klement, T., & Büchs, J. (2013). Itaconic acid - A biotechnological process in change. Bioresource Technology, 135, 422–431. https://doi.org/10.1016/j.biortech.2012.11.141 | spa |
dc.relation.references | Klement, T., & Büchs, J. (2013). Itaconic acid - A biotechnological process in change. Bioresource Technology, 135, 422–431. https://doi.org/10.1016/j.biortech.2012.11.141 | spa |
dc.relation.references | Moheet, I. A., Luddin, N., Ab Rahman, I., Masudi, S. M., Kannan, T. P., & Abd Ghani, N. R. N. (2018). Evaluation of mechanical properties and bond strength of nano-hydroxyapatite silica added glass ionomer cement. Ceramics International, (March), 0–1. https://doi.org/10.1016/j.ceramint.2018.03.010 | spa |
dc.relation.references | Moshaverinia, A., Roohpour, N., Ansari, S., Moshaverinia, M., Schricker, S., Darr, J. a., & Rehman, I. U. (2009). Effects of N-vinylpyrrolidone (NVP) containing polyelectrolytes on surface properties of conventional glass-ionomer cements (GIC). Dental Materials, 25(10), 1240–1247. https://doi.org/10.1016/j.dental.2009.05.006 | spa |
dc.relation.references | Nicholson, J. W. (2016). Adhesion of glass-ionomer cements to teeth: A review. International Journal of Adhesion and Adhesives, 69, 33–38. https://doi.org/10.1016/j.ijadhadh.2016.03.012 | spa |
dc.relation.references | Nisenbaum, A., Apelblat, A., & Manzurola, E. (2012). Volumetric properties of itaconic acid aqueous solutions. Journal of Chemical Thermodynamics, 47, 42–47. https://doi.org/10.1016/j.jct.2011.09.014 | spa |
dc.relation.references | Pandey, H., Kumar, V., & Roy, B. K. (2014). Assessment of genotoxicity of some common food preservatives using Allium cepa L. as a test plant. Toxicology Reports, 1, 300–308. https://doi.org/10.1016/j.toxrep.2014.06.002 | spa |
dc.relation.references | Petrescu, L., Fermeglia, M., & Cormos, C. C. (2016). Life Cycle Analysis applied to acrylic acid production process with different fuels for steam generation. Journal of Cleaner Production, 133(2016), 294–303. https://doi.org/10.1016/j.jclepro.2016.05.088 | spa |
dc.relation.references | Pirok, B. W. J., Breuer, P., Hoppe, S. J. M., Chitty, M., Welch, E., Farkas, T., … Schoenmakers, 45 P. J. (2017). Size-exclusion chromatography using core-shell particles. Journal of Chromatography A, 1486, 96–102. https://doi.org/10.1016/j.chroma.2016.12.015 | spa |
dc.relation.references | Sakthivel, M., Franklin, D. S., Sudarsan, S., Chitra, G., & Guhanathan, S. (2017). Investigation on Au-nano incorporated pH-sensitive (itaconic acid/acrylic acid/triethylene glycol) based polymeric biocompatible hydrogels. Materials Science and Engineering C, 75, 517–523. https://doi.org/10.1016/j.msec.2017.02.054 | spa |
dc.relation.references | Schramm, G. (1994). A Practical Approach to Rheology and Rheometry. Rheology, 291. https://doi.org/10.1017/CBO9781107415324.004 | spa |
dc.relation.references | Shimoyama, A., Fujisaka, A., & Obika, S. (2017). Evaluation of size-exclusion chromatography for the analysis of phosphorothioate oligonucleotides. Journal of Pharmaceutical and Biomedical Analysis, 136, 55–65. https://doi.org/10.1016/j.jpba.2016.12.036 | spa |
dc.relation.references | Smith, William & Hashemi, J. (2006). Fundamentos de la ciencia e ingenieria de materiales. Retrieved from https://chirinossilvaroger.files.wordpress.com/2012/05/fundamentos-de-la ciencia-e-ingenieria-de-materiales-4ta-edicic3b3n-william-f-smi | spa |
dc.relation.references | Standards, I. (2003). म ा नक | spa |
dc.relation.references | Sun, L., Yan, Z., Duan, Y., Zhang, J., & Liu, B. (2018). Improvement of the mechanical, tribological and antibacterial properties of glass ionomer cements by fluorinated graphene. Dental Materials, 1–13. https://doi.org/10.1016/j.dental.2018.02.006 | spa |
dc.relation.references | Wade, L. G. J. (2012). www.elsolucionario.org. (Pearson, Ed.) (septima). México. | spa |
dc.relation.references | William, D., & Callister, J. (1995). Introducción a la Ciencia e Ingeniería de los Materiales. Reverté,. | spa |
dc.relation.references | Winkler, C., Frick, B., Schroecksnadel, K., Schennach, H., & Fuchs, D. (2006). Food preservatives sodium sulfite and sorbic acid suppress mitogen-stimulated peripheral blood mononuclear cells. Food and Chemical Toxicology, 44(12), 2003–2007. https://doi.org/10.1016/j.fct.2006.06.019 | spa |
dc.relation.references | Yamazaki, T., Brantley, W., Culbertson, B., Seghi, R., & Schricker, S. (2005). The measure of wear in N-vinyl pyrrolidinone (NVP) modifed glass-ionomer cements. Polymers for Advanced Technologies, 16(2–3), 113–116. https://doi.org/10.1002/pat.552 | spa |
dc.relation.references | Yang, R. J., Liu, C. C., Wang, Y. N., Hou, H. H., & Fu, L. M. (2017). A comprehensive review of micro-distillation methods. Chemical Engineering Journal, 313, 1509–1520. https://doi.org/10.1016/j.cej.2016.11.041 | spa |
dc.relation.references | Zahir, F., Rizwi, S. J., Haq, S. K., & Khan, R. H. (2005). Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology, 20(2), 351–360. https://doi.org/10.1016/j.etap.2005.03.007 | spa |
dc.relation.references | Zhu, P., Chen, Y., Fang, J., Wang, Z., Xie, C., Hou, B., … Xu, F. (2016). Solubility and solution thermodynamics of thymol in six pure organic solvents. Journal of Chemical Thermodynamics, 92, 198–206. https://doi.org/10.1016/j.jct.2015.09.010 | spa |
dc.rights | Derechos Reservados - Universidad ECCI, 2018 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.subject.proposal | Ácido sórbico | spa |
dc.subject.proposal | Ácido acrílico | spa |
dc.subject.proposal | Ionómero de vidrio | spa |
dc.subject.proposal | Sorbic acid | eng |
dc.subject.proposal | Acrylic acid | eng |
dc.subject.proposal | Glass ionomer | eng |
dc.title | Desarrollo del componente líquido de ionómero de vidrio a partir del poliácido del ácido acrílico y del ácido sórbico. | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_46ec | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/WP | spa |
dc.type.version | info:eu-repo/semantics/updatedVersion | spa |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 2.28 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...

- Nombre:
- Acta de grado.pdf
- Tamaño:
- 241.4 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...

- Nombre:
- Cesión de derechos.pdf
- Tamaño:
- 272.96 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
Cargando...

- Nombre:
- license.txt
- Tamaño:
- 14.45 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: