Publicación: Obtención de poli anilina a través de síntesis química y electroquímica en el laboratorio de química de la universidad Ecci
dc.contributor.advisor | Martinez Mora, Ivan | |
dc.contributor.author | Plata Enrrique, Jorge Luis | |
dc.date.accessioned | 2022-05-11T23:00:31Z | |
dc.date.available | 2022-05-11T23:00:31Z | |
dc.date.issued | 2015 | |
dc.description.abstract | El objeto de este trabajo fue el de realizar la polimerización de la anilina en el laboratorio de la Universidad ECCI, utilizando la síntesis química y electroquímica. La polimerización química es una polimerización oxidativa en la que se utilizó como agente oxidante el persulfato de amonio, se trabajó en medio ácido. La reacción tuvo lugar durante unas tres horas, tras las cuales el precipitado fue filtrado y lavado, con el mismo ácido utilizado como medio y finalmente con agua. La polimerización electroquímica consiste en la oxidación anódica de la anilina sobre un electrodo para formar películas de PANI, el polímero sintetizado utilizando esta técnica mostró buenas características conductivas, fue sintetizado en medio acido en disolución con ácido clorhídrico y dos electrodos de cobre, durante alrededor de 10 minutos. El resultado fue un cambio de color por efecto del paso de corriente, aplicando un potencial alrededor de 1,50 V y un agente dopante (ácido clorhídrico y cloruro de potasio), luego al ser retirado el paso de corriente, apagando la fuente de voltaje, el polímero volvió por si solo a un estado transparente. | spa |
dc.description.abstract | The purpose of this study was to carry out the polymerization of aniline in the laboratory of the ECCI University, using chemical and electrochemical synthesis. The polymerization is a chemical oxidative polymerization in which is used as oxidizing agent ammonium persulfate, we worked in acid medium in acid solution. The reaction proceeded for three hours, after which the precipitate was filtered and washed with the same acid used as medium and finally with water. The electrochemical polymerization is anodic oxidation of aniline to an electrode to form films of PANI, the polymer synthesized using this technique showed good conductive characteristics, was synthesized in acidic solution with hydrochloric acid and two copper electrodes, for about 10 minutes. The result was a color change by effect of the passage of current, applying a potential of about 1.50 V and a dopant agent xiii (hydrochloric acid and potassium chloride), then upon removal of the passage of current, turning off the voltage source the polymer returned by itself to a transparent state. Keywords: polyaniline, Chemical Synthesis, Electrochemical synthesis; conducting polymer | eng |
dc.description.degreelevel | Especialización | spa |
dc.description.degreename | Ingeniero en Plásticos | spa |
dc.description.program | Ingeniería de Plásticos | spa |
dc.description.tableofcontents | INDICE DE TABLAS INDICE DE FIGURAS GLOSARIO RESUMEN ABSTRACT 1 TITULO DE LA INVESTIGACIÓN 2 INTRODUCCIÓN 3 PROBLEMA DE INVESTIGACIÓN 31 DESCRIPCIÓN PROBLEMA DE INVESTIGACIÓN 32 PREGUNTA DE INVESTIGACIÓN 4 OBJETIVOS DE LA INVESTIGACIÓN 41 OBJETIVO GENERAL 42 OBJETIVOS ESPECIFICOS 5 JUSTIFICACIÓN Y DELIMITACION DE LA INVESTIGACIÓN 51 JUSTIFICACIÓN 52 DELIMITACIÓN 6 ALCANCES DEL PROYECTO DE INVESTIGACIÓN 7 MARCO TEORICO 71 POLIMERO 72 CLASIFICACIÓN GENERAL DE LOS POLÍMEROS 73 POLÍMEROS CONDUCTORES 74 HISTORIA DE LOS POLÍMEROS CONDUCTORES 75 CONDUCTIVIDAD EN POLÍMEROS 77 POLIANILINA (PANI) 78 POLIANILINAS MODIFICADAS 8 RESULTADOS Y PROCEDIMIENTOS 81 SINTESIS QUIMICA DE LA POLIANILINA 811 MATERIALES Y REACTIVOS 812 PROCEDIMIENTO 813 RESULTADOS 82 SINTESIS ELECTROQUIMICA DE LA POLIANILINA 821 MATERIALES Y REACTIVOS 822 PROCEDIMIENTO 823 RESULTADOS 83 RESUMEN DE RESULTADOS 9 CONCLUSIONES 10 RECOMENDACIONES 11 BIBLIOGRAFIA | spa |
dc.format.extent | 67 p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.ecci.edu.co/handle/001/2737 | |
dc.publisher | Universidad ECCI | spa |
dc.publisher.faculty | Posgrados | spa |
dc.publisher.place | Colombia | spa |
dc.relation.references | 1. Macdiarmid, A.G.; Chiang, J.C.; Richter, A.F.; Epstein, A.J. Polyaniline: A new concept in conducting polymers. Synth. Met. 1987, 18, 285–290. | spa |
dc.relation.references | 2. Sanchis Bermúdez, Carlos. Síntesis y Caracterización de Polianilinas Auto-Dopadas por Copolimerizacion de Anilina y Acido 2- Aminobencenosulfonico, Aplicaciones como Biosensores y Electrocatalizadores. 2012, 13-28. | spa |
dc.relation.references | 3. Real Academia de la Lengua Española. Anal. Chem. 2006, 78, 4260– 4269 | spa |
dc.relation.references | 4. Zhang, D.; Wang, Y. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview. Mater. Sci. Eng. B 2006, 134, 9– 19 | spa |
dc.relation.references | 5. Mulchandani, A.; Myung, N.V. Conducting polymer nanowires-based label-free biosensors. Curr. Opin. Biotechnol. 2011, 22, 502–508. Nanomaterials 2013, 3- 514 | spa |
dc.relation.references | 6. Ramgir, N.S.; Yang, Y.; Zacharias, M. Nanowire-based sensors. Small 2010, 6, 1705–1722. 7. Matlock-Colangelo, L.; Baeumner, A.J. Recent progress in the design of nanofiber-based biosensing devices. Lab. Chip 2012, 12, 2612–2620 | spa |
dc.relation.references | 8. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56– 58. | spa |
dc.relation.references | 9. Wang, J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 2005, 17, 7–14. | spa |
dc.relation.references | 10. Jacobs, C.B.; Peairs, M.J.; Venton, B.J. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010, 662, 105–127 | spa |
dc.relation.references | 11. Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292 | spa |
dc.relation.references | 12. Patolsky, F.; Lieber, C.M. Nanowire nanosensors. Mater. Today 2005, 8, 20–28. | spa |
dc.relation.references | 13. Yogeswaran, U.; Chen, S.-M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 2008, 8, 290–313 | spa |
dc.relation.references | 14. Sunkara, M.K.; Sharma, S.; Miranda, R.; Lian, G.; Dickey, E.C. Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method. Appl. Phys. Lett. 2001, 79, 1546–1548 | spa |
dc.relation.references | 15. J. Vivekanandan, V. Ponnusamy, A. Mahudeswaran and P.S. Vijayanand. Synthesis, characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods. Archives of Applied Science Research, 2011, 3 (6):147-153 | spa |
dc.relation.references | 16. Wang, J.; Bunimovich, Y.L.; Sui, G.; Savvas, S.; Wang, J.; Guo, Y.; Heath, J.R.; Tseng, H.-R. Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system. Chem. Commun. 2006, 29, 3075–3077 | spa |
dc.relation.references | 17. Wang, J.; Chan, S.; Carlson, R.R.; Luo, Y.; Ge, G.; Ries, R.S.; Heath, J.R.; Tseng, H.-R. Electrochemically fabricated polyaniline nanoframework electrode junctions that function as resistive sensors. Nano Lett. 2004, 4, 1693–1697 | spa |
dc.relation.references | 18. Kuhn, P.; Puigmartí-Luis, J.; Imaz, I.; Maspoch, D.; Dittrich, P.S. Controlling the length and location of in situ formed nanowires by means of microfluidic tools. Lab Chip 2011, 11, 753–757. | spa |
dc.relation.references | 19. Hou, S.; Wang, S.; Yu, Z.T.F.; Zhu, N.Q.M.; Liu, K.; Sun, J.; Lin, W.-Y.; Shen, C.K.-F.; Fang, X.; Tseng, H.-R. A hydrodynamically focused stream as a dynamic template for site-specific electrochemical micropatterning of conducting polymers. Angew. Chem. 2008, 120, 1088–1091 | spa |
dc.relation.references | conducting polymers. Angew. Chem. 2008, 120, 1088–1091. 20. Puigmartí-Luis, J.; Schaffhauser, D.; Burg, B.R.; Dittrich, P.S. A microfluidic approach for the formation of conductive nanowires and hollow hybrid structures. Adv. Mater. 2010, 22, 2255–2259. | spa |
dc.relation.references | 21. Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 1977, 578–580. | spa |
dc.relation.references | 22. Macdiarmid, A.G.; Chiang, J.C.; Richter, A.F.; Epstein, A.J. Polyaniline: A new concept in conducting polymers. Synth. Met. 1987, 18, 285–290 | spa |
dc.relation.references | 23. Sergeyeva, T.A.; Lavrik, N.V.; Piletsky, S.A.; Rachkov, A.E.; El’skaya, A.V. Polyaniline label-based conductometric sensor for IgG detection. Sens. Actuators B 1996, 34, 283–288. | spa |
dc.relation.references | 24. Gerard, M.; Chaubey, A.; Malhotra, B.D. Application of conducting polymers to biosensors. Biosens. Bioelectron. 2002, 17, 345–359. | spa |
dc.relation.references | 25. Dhand, C.; Das, M.; Datta, M.; Malhotra, B.D. Recent advances in polyaniline based biosensors. Biosens. Bioelectron. 2011, 26, 2811–2821. | spa |
dc.relation.references | 26. Lange, U.; Roznyatovskaya, N.V.; Mirsky, V.M. Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 2008, 614, 1–26. | spa |
dc.relation.references | 27. Reddinger, J.; Reynolds, J. Molecular Engineering of π-Conjugated Polymers. In Advances in Polymer Science; Springer: Berlin, Heidelberg, Germany, 1999; Volume 145, pp. 57–122 | spa |
dc.relation.references | 28. MacDiarmid, A.G.; Epstein, A.J. Polyanilines: A novel class of conducting polymers. Faraday Discuss. Chem. Soc. 1989, 88, 317–332 | spa |
dc.relation.references | 29. MacDiarmid, A.G.; Syed, A.A.; Dinesan, M.K. Review: Polyaniline—A novel polymeric material. Talanta 1991, 38, 815–837. | spa |
dc.relation.references | 30. Geniès, E.M.; Boyle, A.; Lapkowski, M.; Tsintavis, C. Polyaniline: A historical survey. Synth. Met. 1990, 36, 139–182 | spa |
dc.relation.references | 31. Huang, W.-S.; Humphrey, B.D.; MacDiarmid, A.G. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J. Chem. Soc. Faraday Trans. 1 1986, 82, 2385–2400. | spa |
dc.relation.references | 32. Bhadra, S.; Khastgir, D.; Singha, N.K.; Lee, J.H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34, 783–810. | spa |
dc.relation.references | 33. Stejskal, J.; Sapurina, I.; Trchová, M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 2010, 35, 1420–1481 | spa |
dc.relation.references | 34. Tran, H.D.; Wang, Y.; D’Arcy, J.M.; Kaner, R.B. Toward an understanding of the formation of conducting polymer nanofibers. ACS Nano 2008, 2, 1841–1848. | spa |
dc.relation.references | 35. Gupta, V.; Miura, N. Large-area network of polyaniline nanowires prepared by potentiostatic deposition process. Electrochem. Commun. 2005, 7, 995–999 | spa |
dc.relation.references | 36. Macdiarmid, A.G.; Mu, S.-L.; Somasiri, N.L.D.; Wu, W. Electrochemical characteristics of “polyaniline” cathodes and anodes in aqueous electrolytes. Mol. Cryst. Liq. Cryst. 1985, 121, 187–190. | spa |
dc.relation.references | 37. Gupta, V.; Miura, N. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Mater. Lett. 2006, 60, 1466–1469 | spa |
dc.relation.references | 38. Zhiani, M.; Gharibi, H.; Kakaei, K. Performing of novel nanostructure MEA based on polyaniline modified anode in direct methanol fuel cell. J. Power Sources 2012, 210, 42–46. | spa |
dc.relation.references | 39. Kelly, F.M.; Meunier, L.; Cochrane, C.; Koncar, V. Polyaniline: Application as solid state electrochromic in a flexible textile display. Displays 2013, 34, 1–7. | spa |
dc.relation.references | 40. Anderson, M.R.; Mattes, B.R.; Reiss, H.; Kaner, R.B. Conjugated polymer films for gas separations. Science 1991, 252, 1412–1415. | spa |
dc.relation.references | 41. Chang, C.-H.; Huang, T.-C.; Peng, C.-W.; Yeh, T.-C.; Lu, H.-I.; Hung, W.-I.; Weng, C.-J.; Yang, T.-I.; Yeh, J.-M. Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 2012, 50, 5044– 5051. | spa |
dc.relation.references | 42. Focke, W.W.; Wnek, G.E.; Wei, Y. Influence of oxidation state, pH, and counterion on the conductivity of polyaniline. J. Phys. Chem. 1987, 91, 5813–5818 | spa |
dc.relation.references | 43. Zhang, X.; Goux, W.J.; Manohar, S.K. Synthesis of polyaniline nanofibers by “nanofiber seeding”. J. Am. Chem. Soc. 2004, 126, 4502– 4503 | spa |
dc.relation.references | 44. Stafström, S.; Brédas, J.L.; Epstein, A.J.; Woo, H.S.; Tanner, D.B.; Huang, W.S.; MacDiarmid, A.G. Polaron lattice in highly conducting polyaniline: Theoretical and optical studies. Phys. Rev. Lett. 1987, 59, 1464–1467. | spa |
dc.relation.references | 45. Heeger, A.J. Semiconducting and metallic polymers: The fourth generation of polymeric materials. J. Phys. Chem. B 2001, 105, 8475–8491 | spa |
dc.relation.references | 46. Ray, A.; Richter, A.F.; MacDiarmid, A.G.; Epstein, A.J. Polyaniline: Protonation/deprotonation of amine and imine sites. Synth. Met. 1989, 29, 151–156. | spa |
dc.relation.references | 47. Nechtschein, M.; Genoud, F.; Menardo, C.; Mizoguchi, K.; Travers, J.P.; Villeret, B. On the nature of the conducting state of polyaniline. Synth. Met. 1989, 29, 211–218 | spa |
dc.relation.references | 48. McManus, P.M.; Cushman, R.J.; Yang, S.C. Influence of oxidation and protonation on the electrical conductivity of polyaniline. J. Phys. Chem. 1987, 91, 744–747. | spa |
dc.relation.references | 49. Genies, E.M.; Tsintavis, C. Redox mechanism and electrochemical behaviour or polyaniline deposits. J. Electroanal. Chem. Interfacial Electrochem. 1985, 195, 109–128. | spa |
dc.relation.references | 50. Geniès, E.M.; Lapkowski, M.; Penneau, J.F. Cyclic voltammetry of polyaniline: Interpretation of the middle peak. J. Electroanal. Chem. Interfacial Electrochem. 1988, 249, 97–107 | spa |
dc.relation.references | 51. Nunziante, P.; Pistoia, G. Factors affecting the growth of thick polyaniline films by the cyclic voltammetry technique. Electrochim. Acta 1989, 34, 223–228. | spa |
dc.relation.references | 52. MacDiarmid, A.G. “Synthetic metals”: A novel role for organic polymers (Nobel lecture). Angew. Chem. Int. Ed. 2001, 40, 2581–2590. | spa |
dc.relation.references | 53. Focke, W.W.; Wnek, G.E. Conduction mechanisms in polyaniline (emeraldine salt). J. Electroanal. Chem. Interfacial Electrochem. 1988, 256, 343–352. | spa |
dc.relation.references | 54. Saheb, A.H.; Seo, S.S. UV-vis and Raman spectral analysis of polyaniline/gold thin films as a function of applied potential. Anal. Lett. 2011, 44, 1206–1216. | spa |
dc.relation.references | 55. Kobayashi, T.; Yoneyama, H.; Tamura, H. Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 281–291. | spa |
dc.relation.references | 56. Li, Q.; Cruz, L.; Phillips, P. Granular-rod model for electronic conduction in polyaniline. Phys. Rev. B 1993, 47, 1840–1845. | spa |
dc.relation.references | 57. Li, W.; Wan, M. Porous polyaniline films with high conductivity. Synth. Met. 1998, 92, 121–126. | spa |
dc.relation.references | 58. Mott, N.F.; Davis, E.A. Electronic Processes in Non-Crystalline Materials; Oxford University Press: Oxford, UK, 2012, 340-344 | spa |
dc.relation.references | 59. Joo, J.; Long, S.M.; Pouget, J.P.; Oh, E.J.; MacDiarmid, A.G.; Epstein, A.J. Charge transport of the mesoscopic metallic state in partially crystalline polyanilines. Phys. Rev. B 1998, 57, 9567–9580. | spa |
dc.relation.references | 60. Ghosh, M.; Barman, A.; De, S.K.; Chatterjee, S. Crossover from Mott to Efros-Shklovskii variable-range-hopping conductivity in conducting polyaniline. Synth. Met. 1998, 97, 23–29. | spa |
dc.relation.references | 61. Sheng, P.; Abeles, B.; Arie, Y. Hopping conductivity in granular metals. Phys. Rev. Lett. 1973, 31, 44–47. | spa |
dc.relation.references | 62. Lin, Y.-F.; Chen, C.-H.; Xie, W.-J.; Yang, S.-H.; Hsu, C.-S.; Lin, M.-T.; Jian, W.-B. Nano approach investigation of the conduction mechanism in polyaniline nanofibers. ACS Nano 2011, 5, 1541–1548 | spa |
dc.relation.references | 63. Zhou, Y.; Freitag, M.; Hone, J.; Staii, C.; Johnson, A.T.; Pinto, N.J.; MacDiarmid, A.G. Fabrication and electrical characterization of polyaniline based nanofibers with diameter below 30 nm. Appl. Phys. Lett. 2003, 83, 3800–3802. | spa |
dc.relation.references | 64. Liu, W.; Kumar, J.; Tripathy, S.; Senecal, K.J.; Samuelson, L. Electrochemical synthesis and characterization of chloride doped polyaniline. Bull. Mater. Sci., Vol. 26, No. 3, April 2003, pp. 329–334. | spa |
dc.relation.references | 65. Ma, Y.; Zhang, J.; Zhang, G.; He, H. Polyaniline nanowires on Si surfaces fabricated with DNA templates. J. Am. Chem. Soc. 2004, 126, 7097–7101 | spa |
dc.relation.references | 66. Trchová, M.; Šeděnková, I.; Konyushenko, E.N.; Stejskal, J.; Holler, P.; Ćirić-Marjanović, G. Evolution of polyaniline nanotubes: The oxidation of aniline in water. J. Phys. Chem. B 2006, 110, 9461–9468. | spa |
dc.relation.references | 67. Zhang, L.; Zujovic, Z.D.; Peng, H.; Bowmaker, G.A.; Kilmartin, P.A.; Travas-Sejdic, J. Structural characteristics of polyaniline nanotubes synthesized from different buffer solutions. Macromolecules 2008, 41, 8877–8884 | spa |
dc.relation.references | 68. Chiou, N.-R.; Epstein, A.J. Polyaniline nanofibers prepared by dilute polymerization. Adv. Mater. 2005, 17, 1679–1683 | spa |
dc.relation.references | 69. Wei, Y.; Tang, X.; Sun, Y.; Focke, W.W. A study of the mechanism of aniline polymerization. J. Polym. Sci. Part Polym. Chem. 1989, 27, 2385– 2396 | spa |
dc.relation.references | 70. Yang, H.; Bard, A.J. The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions. J. Electroanal. Chem. 1992, 339, 423–449. | spa |
dc.relation.references | 71. Li, D.; Huang, J.; Kaner, R.B. Polyaniline nanofibers: A unique polymer nanostructure for versatile applications. Acc. Chem. Res. 2009, 42, 135– 145. | spa |
dc.relation.references | 72. Huang, J.; Kaner, R.B. Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angew. Chem. 2004, 116, 5941–5945 | spa |
dc.relation.references | 73. Dias, H.V.R.; Wang, X.; Rajapakse, R.M.G.; Elsenbaumer, R.L. A mild, copper catalyzed route to conducting polyaniline. Chem. Commun. 2006, 976–978. | spa |
dc.relation.references | 74. Huang, J.; Kaner, R.B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 851–855 | spa |
dc.relation.references | 75. Huang, J.; Virji, S.; Weiller, B.H.; Kaner, R.B. Polyaniline nanofibers: Facile synthesis and chemical sensors. J. Am. Chem. Soc. 2003, 125, 314– 315. | spa |
dc.relation.references | 76. Qiang, J.; Yu, Z.; Wu, H.; Yun, D. Polyaniline nanofibers synthesized by rapid mixing polymerization. Synth. Met. 2008, 158, 544–547. | spa |
dc.relation.references | 77. Martin, C.R. Template synthesis of electronically conductive polymer nanostructures. Acc. Chem. Res. 1995, 28, 61–68. | spa |
dc.relation.references | 78. Martin, C.R. Nanomaterials: A membrane-based synthetic approach. Science 1994, 266, 1961–1966 | spa |
dc.relation.references | 79. Li, G.; Zhang, C.; Li, Y.; Peng, H.; Chen, K. Rapid polymerization initiated by redox initiator for the synthesis of polyaniline nanofibers. Polymer 2010, 51, 1934–1939. | spa |
dc.relation.references | 80. J. Stejskal. Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl. Chem., Vol. 74, No. 5, pp. 857–867 | spa |
dc.rights | Derechos Reservados - Universidad ECCI, 2015 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |
dc.subject.proposal | Polimerización Química | spa |
dc.subject.proposal | Poli Anilina | spa |
dc.subject.proposal | Polímero Conductor | spa |
dc.subject.proposal | Chemical Polymerization | eng |
dc.subject.proposal | Poly Aniline | eng |
dc.subject.proposal | ConductivePolymer | eng |
dc.title | Obtención de poli anilina a través de síntesis química y electroquímica en el laboratorio de química de la universidad Ecci | spa |
dc.type | Trabajo de grado - Especialización | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_46ec | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/other | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/WP | spa |
dc.type.version | info:eu-repo/semantics/updatedVersion | spa |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
Cargando...

- Nombre:
- license.txt
- Tamaño:
- 14.45 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: