Publicación: Modelación matemática, caracterización y diseño de celdas de combustible para la producción de hidrógeno a presión atmosférica.
dc.contributor.advisor | Barco Burgos, Jimmy | |
dc.contributor.author | Sotelo Acosta, Jose Miguel | |
dc.contributor.author | Espinel Ballesteros, Andres David | |
dc.contributor.corporatename | Universidad ECCI | spa |
dc.date.accessioned | 2023-01-10T22:00:42Z | |
dc.date.available | 2023-01-10T22:00:42Z | |
dc.date.issued | 2018 | |
dc.description.abstract | El presente proyecto tiene como objetivo modelar matemáticamente, caracterizar y diseñar celda de combustible para la producción de hidrógeno a presión atmosférica con el fin de generar parámetros de optimización sobre la producción de hidrógeno frente a cambios en variable de operación (voltaje, corriente, temperatura, electrólito y diseño de celda) con miras a implementar la tecnología en motores de combustión interna. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero en Mecánica | spa |
dc.description.program | Ingeniería Mecánica | spa |
dc.description.tableofcontents | INTRODUCCIÓN 9 1. DEFINICIÓN DEL PROBLEMA 10 2. JUSTIFICACIÓN 12 3. OBJETIVOS 14 4. MARCO TEÓRICO 15 5. DISEÑO METODOLÓGICO 20 5.1. Elementos utilizados para la caracterización de las celdas 21 5.1.1 Paneles Solares 22 5.1.2 Regulador de Carga 22 5.1.3 Batería 23 5.1.4 PWM 23 5.1.5 Celda Electrolizadora Alcalina 24 5.1.5.1. Electrodos 25 5.1.5.2. Empaquetaduras 25 5.1.5.3. Mallas de Poliéster 26 5.1.5.4. Mordazas 26 5.1.5.5. Racores y acoples 26 5.1.6 Burbujeador 26 5.1.7 Mechero 27 5.1.8 Cámara termográfica 28 5.1.9 Caudalímetro 28 5.1.9.1 Estructura de caudalímetro 31 5.2. Fase de recolección de datos 34 6. RESULTADOS 37 6.1. Análisis de Datos Experimentales 37 6.1.1 Datos obtenidos por perfil de llama 37 6.1.2 Datos obtenidos por caudal 41 6.2. Modelación matemática para electrolizadores alcalinos 54 6.2.1. Nomenclatura 54 6.2.2. Modelación 54 6.2.3. Modelo Electroquímico 55 6.2.4. Modelo termodinámico 56 6.2.5. Modelo electroquímico 57 6.3. Verificación del Modelo 58 7. CONCLUSIONES Y RECOMENDACIONES 62 8. BIBLIOGRAFÍA 63 | spa |
dc.format.extent | 65 p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.ecci.edu.co/handle/001/3200 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad ECCI | spa |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.publisher.place | Colombia | spa |
dc.relation.references | C. Yilmaz, E. Uludamar, and K. Aydin, “Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines,” Int. J. Hydrogen Energy, vol. 35, no. 20, pp. 11366–11372, 2010. | spa |
dc.relation.references | M. K. Baltacioglu, H. T. Arat, M. Özcanli, and K. Aydin, “Experimental comparison of pure hydrogen and HHO (hydroxy) enriched biodiesel (B10) fuel in a commercial diesel engine,” Int. J. Hydrogen Energy, vol. 1, pp. 3–9, 2015. | spa |
dc.relation.references | S. A. Musmar and A. A. Al-Rousan, “Effect of HHO gas on combustion emissions in gasoline engines,” Fuel, vol. 90, no. 10, pp. 3066–3070, 2011. | spa |
dc.relation.references | I. E. Agency, “Technology Roadmap Bioenergy for Heat and Power.” | spa |
dc.relation.references | M. M. El-Kassaby, Y. A. Eldrainy, M. E. Khidr, and K. I. Khidr, “Effect of hydroxy (HHO) gas addition on gasoline engine performance and emiss ions,” Alexandria Eng. J., vol. 55, no. 1, pp. 243–251, 2016. | spa |
dc.relation.references | P. Chaiwongsa, N. Pornsuwancharoen, and P. P. Yupapin, “Effective hydrogen generator testing for on-site small engine,” Phys. Procedia, vol. 2, no. 1, pp. 93–100, 2009. | spa |
dc.relation.references | J. A. Caton, “Implications of fuel selection for an SI engine: Results from the first and second laws of thermodynamics,” Fuel, vol. 89, no. 11, pp. 3157–3166, 2010. | spa |
dc.relation.references | M. B. King, “Water electrolyzers and the zero-point energy,” Phys. Procedia, vol. 20, pp. 435–445, 2011. | spa |
dc.relation.references | C. Bae and J. Kim, “Alternative fuels for internal combustion engines,” Proc. Combust. Inst., vol. 0, pp. 1–25, 2016. | spa |
dc.relation.references | Energy.Gov, “Vehicle Technologies Office: Advanced Combustion Engines | Department of Energy.” [Online]. Available: http://energy.gov/eere/vehicles/vehicle technologies-office-advanced-combustion-engines. | spa |
dc.relation.references | FuelCellToday, “Water Electrolysis & Renewable Energy Systems,” vol. 2, p. 48, 2013. | spa |
dc.relation.references | K. Zeng and D. Zhang, “Recent progress in alkaline water electrolysis for hydrogen production and applications,” Prog. Energy Combust. Sci., vol. 36, no. 3, pp. 307–326,2010 | spa |
dc.relation.references | K. C. Sandeep, S. Kamath, K. Mistry, A. Kumar M, S. K. Bhattacharya, K. Bhanja, and S. Mohan, “Experimental studies and modeling of advanced alkaline water electrolyser with porous nickel electrodes for hydrogen production,” Int. J. Hydrogen Energy, vol. 42, no. 17, pp. 12094–12103, 2017. | spa |
dc.relation.references | Ø. Ulleberg, “Modeling of advanced alkaline electrolyzers:a system simulation approach,” Int. J. Hydrogen Energy, vol. 28, pp. 21–33, 2003. | spa |
dc.relation.references | J. Barco Burgos, “GASIFICACIÓN DE CUESCO DE PALMA PARA LA OBTENCIÓN DE GAS COMBUSTIBLE EN UN REACTOR DE LECHO FIJO,” 2015. | spa |
dc.relation.references | I. Dincer and C. Acar, “Innovation in hydrogen production,” Int. J. Hydrogen Energy, vol. 42, no. 22, pp. 14843–14864, 2017. | spa |
dc.relation.references | T. da Silva Veras, T. S. Mozer, D. da Costa Rubim Messeder dos Santos, and A. da Silva César, “Hydrogen: Trends, production and characterization of the main process worldwide,” Int. J. Hydrogen Energy, vol. 42, no. 4, pp. 2018–2033, 2017. | spa |
dc.relation.references | Y. Attia and M. Samer, “Metal clusters: New era of hydrogen production,” Renew. Sustain. Energy Rev., vol. 79, no. May 2016, pp. 878–892, 2017. | spa |
dc.relation.references | M. Wang, Z. Wang, X. Gong, and Z. Guo, “The intensification technologies to water electrolysis for hydrogen production - A review,” Renew. Sustain. Energy Rev., 2014. | spa |
dc.relation.references | B. Paul and J. Andrews, “PEM unitised reversible/regenerative hydrogen fuel cell systems: State of the art and technical challenges,” Renew. Sustain. Energy Rev., vol. 79, no. April 2016, pp. 585–599, 2017. | spa |
dc.relation.references | A-PERAZA, G. ALONSO-NÚÑEZ, L. MANZANAREZ PAPAYANOPOULOS, Y. VERDE-GÓMEZ, and A. KEER-RENDÓN, “MODELACIÓN MATEMÁTICA DE LA REACCIÓN DE EVOLUCIÓN DEL HIDRÓGENO,” Rev. Int. Contam. Ambient., vol. 24, no. 1, pp. 21–31, 2008. | spa |
dc.relation.references | M. Ozcanli, M. A. Akar, A. Calik, and H. Serin, “Using HHO (Hydroxy) and hydrogen enriched castor oil biodiesel in compression ignition engine,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23366–23372, 2017. | spa |
dc.relation.references | H2 y CO en una celda de combustible con ánodo de platino-estaño Oxidation of H2 and CO in a fuel cell with a Platinum-tin Anode,” Ing. e Investig., vol. 24, no. 2, pp. 35–40, 2004. | spa |
dc.relation.references | A. Ignacio and B. Arce, “tecnologías alternativas para vehículos automotores y su impacto en las concentraciones de carbono atmosférico Dinámica de la penetración de tecnologías alternativas para vehículos automotores y su impacto en las concentraciones de carbono atmosférico,” 2011. | spa |
dc.relation.references | “Review of water electrolysis technologies and design of renewable hydrogen production systems.” | spa |
dc.relation.references | A. Manabe, M. Kashiwase, T. Hashimoto, T. Hayashida, A. Kato, K. Hirao, I. Shimomura, and I. Nagashima, “Basic study of alkaline water electrolysis,” Electrochim. Acta, 2013. | spa |
dc.relation.references | R. Bhandari, C. A. Trudewind, and P. Zapp, “Life cycle assessment of hydrogen production via electrolysis - A review,” Journal of Cleaner Production. 2014. | spa |
dc.relation.references | S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari, and Y. Kiros, “Advanced alkaline water electrolysis,” Electrochim. Acta, 2012. | spa |
dc.relation.references | C. K. Kjartansd??ttir, L. P. Nielsen, and P. M??ller, “Development of durable and efficient electrodes for large-scale alkaline water electrolysis,” Int. J. Hydrogen Energy, 2013. | spa |
dc.relation.references | P. Shukla, K. K. Singh, P. K. Tewari, and P. K. Gupta, “Numerical simulation of flow electrolysers: Effect of obstacles,” Electrochim. Acta, vol. 79, pp. 57–66, 2012. | spa |
dc.relation.references | M. H. Sellami and K. Loudiyi, “Electrolytes behavior during hydrogen production by solar energy,” Renew. Sustain. Energy Rev., vol. 70, no. July 2016, pp. 1331–1335, 2017. | spa |
dc.relation.references | P. Haug, B. Kreitz, M. Koj, and T. Turek, “Process modelling of an alkaline water electrolyzer,” Int. J. Hydrogen Energy, vol. 42, no. 24, pp. 15689–15707, 2017. | spa |
dc.relation.references | Z. Abdin, C. J. Webb, and E. M. A. Gray, “Modelling and simulation of an alkaline electrolyser cell,” Energy, vol. 138, pp. 316–331, 2017. | spa |
dc.relation.references | M. J. Lavorante, R. Munaro, J. I. Franco, H. J. Fasoli, and A. Sanguinetti, “Impreso en la Argentina,” Av. en Energías Renov. y Medio Ambient., vol. 15, 2011. | spa |
dc.relation.references | E. Aguilar, “Evaluación electróquimica de distintos arreglos de electrolizadores alcalinos,” p. 71, 2015. | spa |
dc.relation.references | J. Rafael and L. Ramírez, “Modelo dinámico de un electrolizador alcalino.” | spa |
dc.relation.references | Rousar I. Fundamentals of electrochemical reactors. In: Ismail MI, editor. Electrochemical reactors: their science and technology part A. Amsterdam: Elsevier, 1989. | spa |
dc.relation.references | Pickett DJ. Electrochemical reactor design, 2nd ed. New York: Elsevier, 1979. | spa |
dc.relation.references | Griesshaber W, Sick F. Simulation of Hydrogen–Oxygen–Systems with PV for the Self-Sufficient Solar House. FhG-ISE, Freiburg im Breisgau, 1991 (in German). | spa |
dc.relation.references | Havre K, Borg P, Tommerberg K. Modeling and control of pressurized electrolyzer for operation in stand alone power systems. Second Nordic Symposium on Hydrogen and Fuel Cells for Energy Storage, Helsinki, January 19–20, 1995. p. 63–78. | spa |
dc.relation.references | Vanhanen J. On the performance improvements of small-scale photovoltaic hydrogen energy systems. PhD thesis, Helsinki University of Technology, Espoo, Finland, 1996. | spa |
dc.relation.references | Hug W, Divisek J, Mergel J, Seeger W, Steeb H. Highly efficient advanced alkaline electrolyzer for solar operation. Int J Hydrogen Energy 1992;17(9):699–705. | spa |
dc.relation.references | Ulleberg I. Simulation of autonomous PV-H2 systems: analysis of the PHOEBUS plant design, operation and energy management. ISES 1997 Solar World Congress, Taejon, August 24–30, 1997 | spa |
dc.relation.references | A. Salami Tijani, N. Afiqah Binti Yusup, and A. Abdol Rahim, “Mathematical Modelling and Simulation Analysis of Advanced Alkaline Electrolyzer System for Hydrogen Production,” 2014 | spa |
dc.relation.references | A. El-Sharif, “Simulation Model of Solar-Hydrogen Generation System.” | spa |
dc.relation.references | P. Olivier, C. Bourasseau, and P. B. Bouamama, “Low-temperature electrolysis system modelling: A review,” Renew. Sustain. Energy Rev., vol. 78, no. March, pp. 280–300, 2017 | spa |
dc.rights | Derechos Reservados - Universidad ECCI, 2018 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.subject.proposal | Calentamiento global | spa |
dc.subject.proposal | Concentración de gases contaminantes en la atmósfera | spa |
dc.subject.proposal | Combustibles renovables | spa |
dc.subject.proposal | Global warming | eng |
dc.subject.proposal | Concentration of polluting gases in the atmosphere | eng |
dc.subject.proposal | Renewable fuels | eng |
dc.title | Modelación matemática, caracterización y diseño de celdas de combustible para la producción de hidrógeno a presión atmosférica. | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_46ec | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/WP | spa |
dc.type.version | info:eu-repo/semantics/updatedVersion | spa |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 4.18 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...

- Nombre:
- Acta de opción de grado.pdf
- Tamaño:
- 78.79 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...

- Nombre:
- Cesión de derechos.pdf
- Tamaño:
- 80.12 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
Cargando...

- Nombre:
- license.txt
- Tamaño:
- 14.45 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: