Show simple item record

dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.contributor.advisorSalazar Romero, Robert Paul
dc.contributor.authorCobos Sarta, Cristian David
dc.date.accessioned2024-04-17T13:14:42Z
dc.date.available2024-04-17T13:14:42Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.ecci.edu.co/handle/001/4007
dc.description.abstractSe han desarrollado y aplicado algoritmos basados en dinámica molecular (MD) para simular electrodos de superficies circulares, separados por un gap. Estos algoritmos también incluyen herramientas de análisis de datos para obtener y comparar la electrostática del sistema. Las partículas interactúan a través del potencial eléctrico tipo Coulomb y de interacciones de corto alcance (choques elásticos). Se emplea un ensamble canónico, lo que requiere algoritmos de control de temperatura (termostatos) para ajustar la energía cinética media del sistema y así influir en la temperatura. La evaluación del rendimiento de los algoritmos se realiza comparando los resultados de MD con soluciones analíticas y numéricas obtenidas mediante el método de momentos (MoM). Se encontró que los termostatos de reescalamiento de velocidades y Andersen presentan dificultades para reproducir la electrostática, debido a problemas como el aumento del momento angular del sistema y la asignación aleatoria de velocidades, que conducen a un comportamiento no realista al minimizar el efecto de las interacciones de largo alcance. El termostato de Nosé-Hoover puede reproducir la electrostática con ajustes adecuados, pero también sufre del problema de aumento del momento angular, lo que puede generar configuraciones no electrostáticas. Por otro lado, el termostato de Langevin logra recrear satisfactoriamente la electrostática al forzar una distribución adecuada de velocidades y mantener el momento angular promedio cerca de cero, evitando así configuraciones no deseadas. Las comparaciones con el método de momentos muestran una buena concordancia, especialmente en casos como el gapless. Esto indica una fiabilidad en los algoritmos desarrollados. Además, se exploraron sistemas con un número reducido de partículas, mostrando que, a pesar de efectos de talla finita, la dinámica molecular sigue oscilando alrededor de las soluciones del método de momentos, lo que sugiere su capacidad para reproducir la electrostática de manera confiable en ensambles canónicos de electrodos de superficie circulares.spa
dc.format.extent69 p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad ECCIspa
dc.rightsDerechos Reservados - Universidad ECCI, 2024spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleDesarrollo e implementación de algoritmos basados en dinámica molecular para la simulación y análisis de datos de electrodos de superficie circulares para la obtención y comparación de su electrostáticaspa
dc.typeTrabajo de grado - Pregradospa
dc.publisher.placeColombiaspa
dc.relation.referencesR. Salazar Romero, C. Bayona, and G. T´ellez, “Monte carlo simulations of twocomponent coulomb gases applied in surface electrodes,” Journal of Physics: Condensed Matter, vol. 34, 01 2022.spa
dc.relation.referencesR. K. Pathria, Statistical mechanics. Elsevier, 2016.spa
dc.relation.referencesN. Davidson, Statistical mechanics. Courier Corporation, 2013.spa
dc.relation.referencesL. Samaj and I. Travˇenec, “Thermodynamic properties of the two-dimensional two- ˇ component plasma,” Journal of Statistical Physics, vol. 101, pp. 713–730, 2000.spa
dc.relation.referencesE. Huigen, A. Peper, and C. Grimbergen, “Investigation into the origin of the noise of surface electrodes,” Medical and biological engineering and computing, vol. 40, pp. 332– 338, 2002.spa
dc.relation.referencesD. Farina and R. Merletti, “A novel approach for precise simulation of the emg signal detected by surface electrodes,” IEEE transactions on biomedical engineering, vol. 48, no. 6, pp. 637–646, 2001.spa
dc.relation.referencesD. Hite, Y. Colombe, A. C. Wilson, D. Allcock, D. Leibfried, D. Wineland, and D. Pappas, “Surface science for improved ion traps,” MRS bulletin, vol. 38, no. 10, pp. 826–833, 2013.spa
dc.relation.referencesI. A. Baratta and C. Andrade, “Installed performance assessment of blade antenna by means of the infinitesimal dipole model,” IEEE Latin America Transactions, vol. 14, no. 2, pp. 569–574, 2016.spa
dc.relation.referencesD. Raabe, Computational materials science: the simulation of materials microstructures and properties. Wiley-Vch, 1998.spa
dc.relation.referencesG. Raabe and G. Raabe, “Molecular dynamics simulations,” Molecular Simulation Studies on Thermophysical Properties: With Application to Working Fluids, pp. 83–113, 2017.spa
dc.relation.referencesK. Zhou and B. Liu, Molecular dynamics simulation: Fundamentals and Applications. Academic Press, 2022.spa
dc.relation.referencesH. A. L. Filipe and L. M. S. Loura, “Molecular dynamics simulations: Advances and applications,” Molecules, vol. 27, 2022.spa
dc.relation.referencesK. A. L. Lima and L. A. R. J´unior, “Formation and stability of nanoscrolls composed of graphene and hexagonal boron nitride nanoribbons: insights from molecular dynamics simulations,” Journal of Molecular Modeling, vol. 29, 2023.spa
dc.relation.referencesA. Pedrielli, M. Dapor, K. Gkagkas, S. Taioli, and N. M. Pugno, “Mechanical properties of twisted carbon nanotube bundles with carbon linkers from molecular dynamics simulations,” International Journal of Molecular Sciences, vol. 24, 2023.spa
dc.relation.referencesS. Ziaei, B. Rashtbari, J. Azamat, and H. Erfan-Niya, “A comparative study on penetration mechanisms of drug-loaded carbon and boron nitride nanotubes through biological membranes by steered molecular dynamics simulations,” Journal of biomolecular structure & dynamics, pp. 1–13, 2023.spa
dc.relation.referencesJ. Chiaverini, R. B. Blakestad, J. Britton, J. D. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Surface-electrode architecture for ion-trap quantum information processing,” arXiv preprint quant-ph/0501147, 2005.spa
dc.relation.referencesQ. Turchette, C. Wood, B. King, C. Myatt, D. Leibfried, W. Itano, C. Monroe, and D. Wineland, “Deterministic entanglement of two trapped ions,” Physical Review Letters, vol. 81, no. 17, p. 3631, 1998.spa
dc.relation.referencesD. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature, vol. 417, no. 6890, pp. 709–711, 2002.spa
dc.relation.referencesB. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt, C. Wunderlich, and W. K. Hensinger, “Blueprint for a microwave trapped ion quantum computer,” Science Advances, vol. 3, no. 2, p. e1601540, 2017.spa
dc.relation.referencesJ. S. Manrique, S. M. Martinez, J. E. Vera, and O. R. Gaitan, “Design of a blade dipole antenna for radio astronomy,” in 2022 IEEE ANDESCON, pp. 1–5, IEEE, 2022.spa
dc.relation.referencesK. Huang, Lectures on statistical physics and protein folding. World Scientific, 2005spa
dc.relation.referencesS. R. Turns and L. L. Pauley, Thermodynamics: concepts and applications. Cambridge University Press, 2020spa
dc.relation.referencesR. Santamaria, Molecular Dynamics. Springer Nature, 2023.spa
dc.relation.referencesA. Einstein and D. Raine, Relativity. Routledge, 2013spa
dc.relation.referencesM. E. Tuckerman, Statistical mechanics: theory and molecular simulation. Oxford university press, 2023.spa
dc.relation.referencesW. G. Hoover, Computational statistical mechanics. Elsevier, 2012.spa
dc.relation.referencesL. B. Loeb, The kinetic theory of gases. Courier Corporation, 2004spa
dc.relation.referencesA. Vakhrushev, Molecular Dynamics. BoD–Books on Demand, 2018.spa
dc.relation.referencesW. C. Gibson, The method of moments in electromagnetics. CRC press, 2021.spa
dc.relation.references] R. W. Pastor, B. R. Brooks, and A. Szabo, “An analysis of the accuracy of langevin and molecular dynamics algorithms,” Molecular Physics, vol. 65, no. 6, pp. 1409–1419, 1988.spa
dc.relation.referencesH. C. Andersen, “Molecular dynamics simulations at constant pressure and/or temperature,” The Journal of chemical physics, vol. 72, no. 4, pp. 2384–2393, 1980.spa
dc.relation.referencesR. Salazar, C. Bayona-Roa, and G. T´ellez, “Electric vector potential formulation in electrostatics: analytical treatment of the gaped surface electrode,” The European Physical Journal Plus, vol. 135, no. 11, p. 878, 2020.spa
dc.relation.referencesR. Salazar, C. Bayona-Roa, and J. Sol´ıs-Chaves, “Electrostatic field of angulardependent surface electrodes,” The European Physical Journal Plus, vol. 135, no. 1, p. 93, 2020.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalDinámica Molecularspa
dc.subject.proposalElectrostáticaspa
dc.subject.proposalElectrodo de superficie circularspa
dc.subject.proposalEnsamble canónicospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero en Electrónicaspa
dc.description.programIngeniería Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional