Publicación: Evaluación del estado superficial y proceso de anodizado en rotor de compresión - Motor J69 T 25A marca Continental
dc.contributor.advisor | Villalobos Correa, Daniel Eduardo | |
dc.contributor.author | Triana Vargas, John Freddy | |
dc.contributor.author | Guerrero Córdoba, Carlos Alberto | |
dc.date.accessioned | 2021-09-09T20:59:16Z | |
dc.date.available | 2021-09-09T20:59:16Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Países de Latinoamérica como; Brasil, Chile, Perú Paraguay entre otros, tuvieron en sus fuerzas militares la aeronave T37. En la actualidad en la Fuerza Aérea Colombiana se encuentran en servicio 68 aeronaves FAC T37B de las 1269 fabricadas entre 1955 y 1975, estás operan desde los años 70 con fines de entrenamiento militar con capacidad para dos tripulantes (estudiante e instructor). Dichos aviones están equipados con dos motores J69 T 25A marca Continental, que proporciona un empuje de 4.57 kN por cada uno, alcanzando velocidades de 507 km/h. El rotor de compresión del motor J69 T 25A es un componente crítico debido a las condiciones de trabajo, presentando fallas de corrosión y desgaste, según datos suministrado por la Fuerza Aérea Colombiana cada 10000 horas de trabajo aproximadamente es necesario el cambio de la pieza, la cual tiene un costo de 15000 dólares. Una de las alternativas planteadas por la FAC es realizar un tratamiento superficial de anodizado que supla y homologue el recubrimiento original disminuyendo costos en el mantenimiento del motor. En este proyecto se busca caracterizar el material del rotor y analizar el estado superficial para realizar el proceso de anodizado a la pieza en cuestión, para dar una mejor funcionalidad en los distintos ambientes donde se desempeña, brindando, por ejemplo, mayor resistencia al desgaste o mayor dureza, sin afectar sus propiedades mecánicas como la resistencia a la fatiga. Una vez obtenidos las películas de anodizado se caracterizarán para medir el tipo de recubrimiento que se desea y su variación con respecto a parámetros como densidad de corriente, temperatura y concentración de electrolito. | spa |
dc.description.abstract | Latin American countries like; Brazil, Chile, Peru, Paraguay, among others, had the T37 aircraft in their military forces. Currently in the Colombian Air Force 68 FAC T37B aircraft of 1269 manufactured between 1955 and 1975 are in service, since the 1970s they have been operating for military training purposes with capacity for two crew (student and instructor). These aircraft are equipped with two J69 T 25A Continental brand engines, which provide a thrust of 4.57 kN for each one, reaching speeds of 507 km/h. The compression rotor of the J69 T 25A engine is a critical component due to the working conditions, presenting corrosion and wear failures, according to data supplied by the Colombian Air Force every 10000 hours of work approximately it is necessary to change the part, the which has a cost of 15000 USD. One of the alternatives proposed by the FAC is to carry out an anodizing surface treatment that replaces and homologates the original coating, reducing engine maintenance costs. This project seeks to characterize the rotor material and analyze the surface state to perform the anodizing process to the part in question, to give better functionality in the different environments where it performs, providing, for example, greater resistance to wear or greater hardness, without affecting its mechanical properties such as resistance to fatigue. Once the anodizing films have been obtained, they will be characterized to measure the type of coating that is desired and its variation with respect to parameters such as current density, temperature and electrolyte concentration | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniero | spa |
dc.description.program | Maestría en Ingeniería | spa |
dc.description.tableofcontents | Introducción 1, 1. Marco Teórico 3, 1.1 Motor Turborreactor Modelo J69-T-25A 3, 1.1.1 Descripción general 4, 1.1.2 Componentes y Sistemas del Turborreactor J29 T 25A 9, 1.1.3 El conjunto de la unidad de compresión 14, 1.2 Aleaciones de Aluminio 16, 1.3 Aleaciones de Aluminio para el sector Aeronáutico 23, 1.4 Anodizado de Aluminio 25, 1.4.1 Breve Historia del Anodizado 28, 1.4.2 Tipos de Anodizado 29, 1.4.3 Proceso de Anodizado 31, 1.4.4 Procedimiento de Anodizado 32, 1.4.5 El Anodizado como un proceso industrial 33, 1.5 Mecanismo de formación de la película de Al2O3 35, 1.5.1 Morfología de la película de Al2O3 36, 1.5.2 Fundamentos teóricos de la estructura y formación de la capa de óxido anodizado 37, 1.6 Factores que afectan las propiedades y naturaleza del anodizado 40, 1.6.1 Tipo del metal base 40, 1.6.2 Tipo del electrolito 41, 1.6.3 Influencia de las condiciones de trabajo del anodizado 42, 1.7 Técnicas de caracterización 42, 1.7.1 Microscopia Electrónica de Barrido (SEM) 43, 1.7.2 Espectroscopía dispersa de energía de rayos X (EDS) 50, 1.7.3 Microabrasión 51, 1.7.4 Microdureza Vickers (HV) 58, 2. Metodología 61, 2.1 Evaluación inicial del rotor en estado de recepción 62, 2.2 Diseño experimental para anodizado 63, 2.3 Preparación de las muestras 64, 2.3.1 Corte de las muestras de material del rotor de compresión 64, 2.3.2 Preparación superficial de las muestras 64, 2.4 Diseño y construcción de celda de anodizado 65, 2.5 Proceso de anodizado de las muestras 68, 2.6 Caracterización de las películas de Al2O3 71, 2.6.1 Determinación del espesor de las películas de Al2O3 72, 2.6.2 Prueba de Microabrasión de las películas de Al2O3 73, 2.6.3 Prueba de Microdureza Vickers a las películas de Al2O3 75, 3. Resultados y Discusión 79, 3.1 Evaluación inicial del rotor en estado de recepción 79, 3.1.1 Modelado 3D del Rotor de Compresión 85, 3.2 Proceso de anodizado de las muestras 90, 3.3 Caracterización de las películas de Al2O3 92, 3.3.1 Determinación del espesor de las películas de Al2O3 101, 3.3.2 Prueba de microabrasión de las películas de Al2O3 110, 3.3.3 Prueba de microdureza Vickers de las películas de Al2O3 120, 4. Conclusiones y recomendaciones 129, 4.1 Conclusiones 129, 4.2 Recomendaciones 131, A. Anexo: Composición Química y Designación Internacional para las Aleaciones de Aluminio 135, B. Anexo: Detalle de construcción del Turborreactor Turbomeca Marbore II 153, C. Anexo: Informe de ensayo de Microdureza realizado por la empresa Ferrotérmicos S.A.S 157, D. Anexo: Informe de prueba de EDS realizado por el Centro de manufactura en textil y cuero SENA ,159 F. Anexo: Participación en eventos de divulgación tecnológica 165, Bibliografía 173, | spa |
dc.format.extent | 182 p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.ecci.edu.co/handle/001/1468 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad ECCI | spa |
dc.publisher.faculty | Posgrados | spa |
dc.publisher.place | Colombia | spa |
dc.relation.references | R. M. Vidal, Los Motores Aereoespaciales de la A a la Z, V12 ed. Barcelona: L’Aeroteca, 2018. | spa |
dc.relation.references | C. S. Tarifa, “Motores de reacción y turbinas de gas.” Instituto Nacional de Técnica Aeronáutica Esteban Terradas, Madrid, p. 21, 1951. | spa |
dc.relation.references | A. E. Oñate, “Turborreactores: Teoria, Sistemas y propulsión de aviones.” Aereonáutica Sumass S.A., Salamanca, pp. 66–67, 1981. | spa |
dc.relation.references | “Principios basicos de funcionamiento del motor de reaccion.” https://www.seguridadaerea.gob.es/media/4498172/modulo14_cap01_a.pdf (accessed Mar. 26, 2019). | spa |
dc.relation.references | G. A. Muñoz, “Evaluación del comportamiento energético de un motor de aviación de la FAC a condiciones ambientales de Bogotá empleando diferentes mezclas de biocombustible con combustible Jet A-1,” Universidad ECCI - Bogotá, 2019. | spa |
dc.relation.references | T. CAE, Intermediate Maintenance Instructions Turbojet Engine Model No. J69- T25A. Oklahoma: Teledine CAE, 2004. | spa |
dc.relation.references | M. Cuesta, “Motores de Reacción: Tecnología y operación de vuelo.” Paraninfo, Madrid, pp. 152–162, 1980. | spa |
dc.relation.references | B. Stojanovic, М. Bukvic, and I. Epler, “Application of Aluminum and Aluminum Alloys in Engineering,” Appl. Eng. Lett. J. Eng. Appl. Sci., vol. 3, no. 2, pp. 52–62, 2018, doi: 10.18485/aeletters.2018.3.2.2. | spa |
dc.relation.references | J. R. Davis, “Light Metals and Alloys-Aluminum and Aluminum Alloys,” Alloying: Understanding the Basics. American Society of Materials, pp. 351–416, 2001, doi: 10.1361/autb2001p351. | spa |
dc.relation.references | F. C. Campbell, “Aluminum Alloys,” in Lightweight Materials: Understanding the Basics, Ohio: ASM International, 2012, p. 34. | spa |
dc.relation.references | A. Camargo, W. Aperador, A. Rios Rojas, C. Ortiz, and E. Vera, “Caracterización morfológica de películas anódicas crecidas sobre al 2024-T3 mediante el uso de corriente directa,” Sci. Tech., vol. XIII, no. 36, pp. 331–335, 2007. | spa |
dc.relation.references | D. Elabar, G. R. La Monica, M. Santamaria, F. Di Quarto, P. Skeldon, and G. E. Thompson, “Anodizing of aluminium and AA 2024-T3 alloy in chromic acid: Effects of sulphate on film growth,” Surf. Coatings Technol., vol. 309, pp. 480–489, 2017, doi: 10.1016/j.surfcoat.2016.11.108. | spa |
dc.relation.references | G. D. Sulka, Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing. 2008. | spa |
dc.relation.references | J. M. Runge, The Metallurgy of Anodizing Aluminum, 1st ed. Chicago: Springer International Publishing, 2018. | spa |
dc.relation.references | R. Parra, A. Monsalve, and M. Páez, “Influencia de los tratamientos superficiales en la vida útil a fatiga de la aleación de aluminio 2024 T3.” Departamento de Química de los Materiales, Facultad de Química y Biología, USACH, Santiago de Chile, 2005. | spa |
dc.relation.references | M. Rodriguez, C. Garay, and R. Martínez, “El aluminio, material trascendente en la historia humana,” Temas Cienc. y Tecnol., vol. 21, no. 61, p. 3,4, 2017. | spa |
dc.relation.references | Universidad Politécnica de Valencia, “Aleaciones para Ingeniería Unidad 13,” Curso de Fundamentos de Ciencia de Materiales, 2019. https://www.upv.es/materiales/Fcm/Fcm13/fcm13_4.html. | spa |
dc.relation.references | R. B. C. Cayless, “Alloy and Temper Designation Systems for Aluminum and Aluminum Alloys,” Properties and Selection: Nonferrous Alloys and Special Purpose Materials, vol. 2. ASM International, p. 0, Jan. 01, 1990, doi: 10.31399/asm.hb.v02.a0001058. | spa |
dc.relation.references | SAE International, “Metals & Alloys in the Unified Numbering System, 13th Edition.” SAE International, Warrendale, Pennsylvania, May 2017. | spa |
dc.relation.references | A. S. M. H. Committee, “Properties and Selection: Nonferrous Alloys and Special Purpose Materials.” ASM International, Jan. 01, 1990, doi: 10.31399/asm.hb.v02.9781627081627. | spa |
dc.relation.references | H. M. M. A. Rashed and A. K. M. Bazlur Rashid, “Heat Treatment of Aluminum Alloys,” Compr. Mater. Finish., vol. 2–3, pp. 337–371, 2017, doi: 10.1016/B978-0- 12-803581-8.09194-3. | spa |
dc.relation.references | J. G. Kaufman, Introduction to Aluminium Alloys and Tempers. Ohio: ASM International, 2000. | spa |
dc.relation.references | F. C. Campbell, “Chapter 26 Aluminum,” in Elements of Metallurgy and Engineering Alloys, vol. 3, ASM International, Ed. 2008, pp. 487–508. | spa |
dc.relation.references | V. V. K. Prasad Rambabu, N. Eswara Prasad and R. J. H. Wanhill, “Aluminium Alloys for Aerospace Applications,” Aerosp. Mater. Mater. Technol. Vol. 1 Aerosp. Mater., vol. 1, no. May, p. 586, 2017, doi: 10.1007/978-981-10-2134-3. | spa |
dc.relation.references | W. J. Stȩpniowski, A. Nowak-Stȩpniowska, A. Presz, T. Czujko, and R. A. Varin, “The effects of time and temperature on the arrangement of anodic aluminum oxide nanopores,” Mater. Charact., vol. 91, pp. 1–9, 2014, doi: 10.1016/j.matchar.2014.01.030. | spa |
dc.relation.references | I. Mohammadi, S. Ahmadi, and A. Afshar, “Effect of pulse current parameters on the mechanical and corrosion properties of anodized nanoporous aluminum coatings,” Mater. Chem. Phys., vol. 183, pp. 490–498, 2016, doi: 10.1016/j.matchemphys.2016.09.006. | spa |
dc.relation.references | J. H. Osborn, “Understanding and Specifying Anodizing,” Novato, California, 2019. [Online]. Available: http://www.omwcorp.com/wp content/uploads/2018/02/Understanding-and-Specifying-Anodizing.pdf. | spa |
dc.relation.references | J. Vélez Leache, “Puesta a punto de un equipo de anodizado para aleaciones de aluminio,” 2014. | spa |
dc.relation.references | L. Zaraska, G. D. Sulka, and M. Jaskuła, “Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays,” Surf. Coatings Technol., vol. 205, no. 7, pp. 2432–2437, Dec. 2010, doi: 10.1016/j.surfcoat.2010.09.038. | spa |
dc.relation.references | S. Wernick, R. Pinner, and P. G. Sheasby, The Surface Treatment and Finishing of Aluminium and Its Alloys., 5th Editio. Teddington UK: Finishing Publications Limited, 1987. | spa |
dc.relation.references | A. D. Juhl, “Anodizing for aerospace: 101,” Materials Today, 2010. https://www.materialstoday.com/metal-finishing/features/anodizing-for-aerospace 101/. | spa |
dc.relation.references | J. A. Chávez Hernández, “Efecto de la adicion de acido borico sobre la pelicula de anodizado de la aleacion de aluminio 2024.,” Centro de Investigación en Materiales Avanzados CIMAV, 2013. | spa |
dc.relation.references | A. Deacon Juhl, “Introduction to Anodizing Aluminum: Why and How to Enhance Final Product,” Light Metal Age, San Francisco, CA, p. 36, 2021. | spa |
dc.relation.references | MIL-A-8625F, “Anodic coatings for aluminum and aluminum alloys.,” 1993. | spa |
dc.relation.references | J. Milton F. Stevenson, “Anodizing,” in ASM Handbook, Surface Engineering, vol. 5, J. C.M. Cotell; J.A. Sprague; F.A. Smidt, Ed. ASM International, 1994, pp. 482– 493. | spa |
dc.relation.references | A. Yabuki, Y. Nagayama, and I. W. Fathona, “Porous anodic oxide film with self healing ability for corrosion protection of aluminum,” Electrochim. Acta, vol. 296, pp. 662–668, Feb. 2019, doi: 10.1016/j.electacta.2018.11.119. | spa |
dc.relation.references | S. J. Lee and S. J. Kim, “Essential anti-corrosive behavior of anodized Al alloy by applied current density,” Appl. Surf. Sci., vol. 481, pp. 637–641, Jul. 2019, doi: 10.1016/j.apsusc.2019.03.155. | spa |
dc.relation.references | H. Huang et al., “Ultra-fast fabrication of porous alumina film with excellent wear and corrosion resistance via hard anodizing in etidronic acid,” Surf. Coatings Technol., vol. 393, p. 125767, Jul. 2020, doi: 10.1016/j.surfcoat.2020.125767. | spa |
dc.relation.references | P. Mishra and K. R. Hebert, “Self-organization of anodic aluminum oxide layers by a flow mechanism,” Electrochim. Acta, vol. 340, p. 135879, Apr. 2020, doi: 10.1016/j.electacta.2020.135879. | spa |
dc.relation.references | S. E. Kushnir and K. S. Napolskii, “Thickness-dependent iridescence of one dimensional photonic crystals based on anodic alumina,” Mater. Des., vol. 144, pp. 140–150, Apr. 2018, doi: 10.1016/j.matdes.2018.02.012. | spa |
dc.relation.references | I. V. Roslyakov et al., “Microhotplate catalytic sensors based on porous anodic alumina: Operando study of methane response hysteresis,” Sensors Actuators, B Chem., vol. 330, p. 129307, Mar. 2021, doi: 10.1016/j.snb.2020.129307. | spa |
dc.relation.references | S. Kumar, K. K. Raina, and T. Islam, “Anodic aluminium oxide based humidity sensor for online moisture monitoring of power transformer,” Sensors Actuators, B Chem., vol. 329, p. 128908, Feb. 2021, doi: 10.1016/j.snb.2020.128908. | spa |
dc.relation.references | M. Pashchanka and J. J. Schneider, “Self-ordering regimes of porous anodic alumina layers formed in highly diluted sulfuric acid electrolytes,” J. Phys. Chem. C, vol. 120, no. 27, pp. 14590–14596, 2016, doi: 10.1021/acs.jpcc.5b11801. | spa |
dc.relation.references | W. J. Stȩpniowski, M. Moneta, M. Norek, M. Michalska-Domańska, A. Scarpellini, and M. Salerno, “The influence of electrolyte composition on the growth of nanoporous anodic alumina,” Electrochim. Acta, vol. 211, pp. 453–460, Sep. 2016, doi: 10.1016/J.ELECTACTA.2016.06.076. | spa |
dc.relation.references | J. Li, H. Wei, K. Zhao, M. Wang, D. Chen, and M. Chen, “Effect of anodizing temperature and organic acid addition on the structure and corrosion resistance of anodic aluminum oxide films,” Thin Solid Films, vol. 713, no. January, p. 138359, 2020, doi: 10.1016/j.tsf.2020.138359. | spa |
dc.relation.references | F. Zhou et al., “Effects of current density and electrolyte temperature on the volume expansion factor of anodic alumina formed in oxalic acid,” Electrochim. Acta, vol. 59, pp. 186–195, 2012, doi: 10.1016/j.electacta.2011.10.052. | spa |
dc.relation.references | L. Zaraska, G. D. Sulka, J. Szeremeta, and M. Jaskuła, “Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum,” Electrochim. Acta, vol. 55, no. 14, pp. 4377–4386, May 2010, doi: 10.1016/j.electacta.2009.12.054. | spa |
dc.relation.references | V. P. Parkhutik and V. I. Shershulsky, “Theoretical Modelling of Porous Oxide Growth on Aluminium,” J. Phys. D. Appl. Phys., vol. 25, no. 8, pp. 1258–1263, 1992, doi: 10.1088/0022-3727/25/8/017. | spa |
dc.relation.references | Y. E. Makushok, V. P. Parkhutik, J. M. Marténez-Duart, and J. M. Albella, “Morphology of passive films formed during electrochemical anodization of materials,” J. Phys. D. Appl. Phys., vol. 27, no. 3, pp. 661–669, 1994, doi: 10.1088/0022-3727/27/3/036. | spa |
dc.relation.references | R. A. Mirzoev, A. D. Davydov, S. I. Vystupov, and T. B. Kabanova, “Mathematical model of current-voltage characteristic of steady-state aluminum anodization,” Electrochim. Acta, vol. 371, 2021, doi: 10.1016/j.electacta.2021.137823. | spa |
dc.relation.references | R. A. Mirzoev, A. D. Davydov, E. S. Zarubenko, S. I. Vystupov, and E. S. Panteleev, “Analytical 3D migration model of steady-state metal anodizing: the velocity fields and trajectories of inert tracers, metal and oxygen ions,” Electrochim. Acta, vol. 218, pp. 74–83, Nov. 2016, doi: 10.1016/j.electacta.2016.09.115. | spa |
dc.relation.references | T. Aerts, E. Tourwé, R. Pintelon, I. De Graeve, and H. Terryn, “Modelling of the porous anodizing of aluminium: Generation of experimental input data and optimization of the considered model,” Surf. Coatings Technol., vol. 205, no. 19, pp. 4388–4396, 2011, doi: 10.1016/j.surfcoat.2011.03.044. | spa |
dc.relation.references | A. Zamora Jiménez, “Protección superficial de aluminio mediante recubrimientos nanoestructurados,” Escuela Técnica Superior de Ingeniería Industrial, 2016. | spa |
dc.relation.references | P. Kwolek, “Hard anodic coatings on aluminum alloys,” Adv. Manuf. Sci. Technol., vol. 41, no. 3, pp. 35–46, 2017, doi: 10.2478/amst-2017-0016. | spa |
dc.relation.references | J. M. Torrescano Alvarez, “Hard anodic films for aluminium alloys,” The University of Manchester, 2018. | spa |
dc.relation.references | JPK Instruments AG, “Application of nanoporous alumina surfaces as substrates for pore- suspended lipid membranes,” 2003. | spa |
dc.relation.references | P. Zhang and Y. Zuo, “Effects of pore parameters on performance of anodic film on 2024 aluminum alloy,” Mater. Chem. Phys., vol. 231, no. March, pp. 9–20, 2019, doi: 10.1016/j.matchemphys.2019.04.008. | spa |
dc.relation.references | J. A. González Fernández, Teoría y práctica de la lucha contra la corrosión. Madrid: Consejo Superior de Investigaciones Científicas, 1984. | spa |
dc.relation.references | D. E. Ribadeneira, “Microscopía Electrónica : Fundamentos , Teoría y Aplicaciones,” Escuela Politécnica Nacional, 1998. | spa |
dc.relation.references | J. Renau-piqueras and M. Faura, “Principios básicos del Microscopio Electrónico de Barrido,” Centro de Investigación. Hospital “La Fé,” Ed. Valencia, 1995, pp. 73– 92. | spa |
dc.relation.references | U. Santhi, M. Ngui, S. Mahendran, and K. Kadirgama, “Cobalt nanowires : Advancing into future nanomaterial,” AIP Conf. Proc. 2059, no. January, 2019, doi: 10.1063/1.5085949. | spa |
dc.relation.references | D. C. Bell and N. Erdman, “Introduction to the Theory and Advantages of Low Voltage Electron Microscopy,” in Low Voltage Electron Microscopy: Principles and Applications, First Edit., John Wiley & Sons, Ltd, 2013, p. 30. | spa |
dc.relation.references | A. Ul-hamid, A Beginners ’ Guide to Scanning Electron Microscopy. Switzerland: Springer, 2018. | spa |
dc.relation.references | M. Kannan, K. . Subramanian, and J. G.J, “Scanning Electron Microscopy: Principle, Components and Applications,” in Fundamentals and aplications of Nanotechnology, Tamil Nadu Agricultural University, Ed. New Delhi: Daya Publishing House® A Division of Astral International Pvt. Ltd, 2018, pp. 81–92. | spa |
dc.relation.references | C. Suryanarayana, “Microstructure : An Introduction,” in Aerospace Materials and Material Technologies, Indian Institute of Metals Series, no. November 2017, Singapore: Springer Science+ Business Media, 2018. | spa |
dc.relation.references | R. J. H. Wanhill, Aerospace Materials and Material Technologies, vol. 2. Singapore: Springer, 2017. | spa |
dc.relation.references | A. Polini and F. Yang, “Physicochemical characterization of nanofiber composites,” in Nanofiber Composites for Biomedical Applications, Elsevier Inc., 2017, pp. 97– 115. | spa |
dc.relation.references | J. C. Russ, “Energy Dispersive Spectrometers,” in Fundamentals of Energy Dispersive X-ray Analysis, Elsevier, 1984, pp. 17–41. | spa |
dc.relation.references | G. C. Wang, “Slag processing,” Util. Slag Civ. Infrastruct. Constr., pp. 87–113, 2016, doi: 10.1016/b978-0-08-100381-7.00005-7. | spa |
dc.relation.references | A. Martinez, “Microanálisis Por Dispersión De Energías De Rayos-X ( XEDS ),” Serv. Microsc. Electrónica. SCAI. Univ. Málaga, pp. 1–11, 2010. | spa |
dc.relation.references | D. Zhao, Y. Zhang, and E. J. Essene, “Electron probe microanalysis and microscopy: Principles and applications in characterization of mineral inclusions in chromite from diamond deposit,” Ore Geol. Rev., vol. 65, no. P4, pp. 733–748, 2015, doi: 10.1016/j.oregeorev.2014.09.020. | spa |
dc.relation.references | C. D. Resendiz-Calderon, L. I. Farfan-Cabrera, J. E. Oseguera-Peña, I. Cázares Ramírez, and E. A. Gallardo-Hernandez, “Friction and Wear of Metals under Micro abrasion, Wet and Dry Sliding Conditions,” J. Mater. Eng. Perform., vol. 29, no. 9, pp. 6228–6238, 2020, doi: 10.1007/s11665-020-05102-3. | spa |
dc.relation.references | R. C. Cozza, “Effect of sliding distance on abrasive wear modes transition,” J. Mater. Res. Technol., vol. 4, no. 2, pp. 144–150, 2015, doi: 10.1016/j.jmrt.2014.10.007. | spa |
dc.relation.references | K. Adachi and I. M. Hutchings, “Wear-mode mapping for th micro-scale abrasion test,” Wear, vol. 255, no. 1–6, pp. 23–29, 2003, doi: 10.1016/S0043- 1648(03)00073-5. | spa |
dc.relation.references | R. I. Trezona, D. N. Allsopp, and I. M. Hutchings, “Transitions between two-body and three-body abrasive wear: Influence of test conditions in the microscale abrasive wear test,” Wear, vol. 225–229, no. I, pp. 205–214, Apr. 1999, doi: 10.1016/S0043-1648(98)00358-5. | spa |
dc.relation.references | M. A. N. Ardila, H. L. Costa, and J. D. B. de Mello, “Influence of the ball material on friction and wear in microabrasion tests,” Wear, vol. 450–451, no. December 2019, 2020, doi: 10.1016/j.wear.2020.203266. | spa |
dc.relation.references | M. G. Gee et al., “Measurement Good Practice Guide No 57 - Ball Cratering or Micro-Abrasion Wear Testing of Coatings,” Meas. Good Pract. Guid., no. 57, 2002. | spa |
dc.relation.references | Y. Rodriguez Torres, “Fabricación de un equipo de ensayo de desgaste microabrasivo con esfera rotativa,” Universidad Central Marta Abreu de las Villas, 2019. | spa |
dc.relation.references | H. Çalişkan, A. Erdoǧan, P. Panjan, M. S. Gök, and A. C. Karaoǧlanli, “Micro abrasion wear testing of multilayer nanocomposite tialsin/tisin/tialn hard coatings deposited on the aisi h11 steel,” Mater. Tehnol., vol. 47, no. 5, pp. 563–568, 2013. | spa |
dc.relation.references | P. Guzm, L. Yate, M. Sandoval, J. Caballero, and W. Aperador, “Characterization of the Micro-Abrasive Wear in Coatings of TaC-HfC / Au for Biomedical Implants,” 2017, doi: 10.3390/ma10080842. | spa |
dc.relation.references | I.M. Hutchings, WEAR – MATERIALS, MECHANISMS AND PRACTICE. England: John Wiley & Sons Ltd, 2006. | spa |
dc.relation.references | A. M. Treviño, “Desarrollo de una metodología para pruebas de erosión,” Universidad Autónoma de Nuevo León, 2004. | spa |
dc.relation.references | F. R. Rojas Horna, “Parametric study of the Particle Finite Element Method applied on frictior, wear and excavation processes,” Univ. Politec. Cataluña, pp. 40–57, 2010. | spa |
dc.relation.references | R. Gheisari and A. A. Polycarpou, “Three-body abrasive wear of hard coatings: Effects of hardness and roughness,” Thin Solid Films, vol. 666, pp. 66–75, Nov. 2018, doi: 10.1016/j.tsf.2018.07.052. | spa |
dc.relation.references | I. D. Marinescu, W. B. Rowe, B. Dimitrov, and I. Inasaki, “Loose Abrasive Processes,” in Tribology of Abrasive Machining Processes, Elsevier, 2004, pp. 499–530. | spa |
dc.relation.references | G. W. Stachowiak and A. W. Batchelor, “Fatigue Wear,” Tribol. Ser., vol. 24, no. C, pp. 657–681, Jan. 1993, doi: 10.1016/S0167-8922(08)70588-1. | spa |
dc.relation.references | G. W. Stachowiak and A. W. Batchelor, “Corrosive and Oxidative Wear,” Tribol. Ser., vol. 24, no. C, pp. 637–656, Jan. 1993, doi: 10.1016/S0167-8922(08)70587- X. | spa |
dc.relation.references | ASTM Standard, “Standard Test Method for Microindentation Hardness of Materials,” ASTM Int., vol. E384, pp. 1–40, 2017, doi: 10.1520/E0384-17. | spa |
dc.relation.references | C. F. Rodrigues, L. A. Blaga, J. F. Santos, L. B. Canto, and E. H. Jr, “FricRiveting of aluminum 2024-T351 and polycarbonate: Temperature evolution, microstructure and mechanical performance,” J. Mater. Process. Tech., vol. 2007, 2014, doi: 10.1016/j.jmatprotec.2013.12.018. | spa |
dc.relation.references | Z. Pei, E. Process, M. Science, C. Technology, F. P. Processing, and C. Base, “Correlation Between Microhardness and Microstructure of Anodic Film on 2024 Aluminum Alloy,” J. Wuhan Univ. Technol., vol. 30, no. 3, pp. 586–590, 2015, doi: 10.1007/s11595-015-1193-7. | spa |
dc.relation.references | A. L. Laborda, “Estudio de la dureza y tenacidad de fracturas en fibras eutécticas Al2O3 procesadas por fusión zonal con laser,” Universidad de Zaragoza, 2011. | spa |
dc.relation.references | A. M. Abd-Elnaiem, G. Abbady, D. Ali, and T. B. Asafa, “Influence of anodizing voltage and electrolyte concentration on Al-1 wt% Si thin films anodized in H2SO4,” Mater. Res. Express, vol. 6, no. 8, 2019, doi: 10.1088/2053-1591/ab2848. | spa |
dc.relation.references | A. M. Abd-Elnaiem, A. M. Mebed, W. J. Stępniowski, and T. Czujko, “Characterization of arrangement and geometry of porous anodic alumina formed by one-step anodization of Al-1 wt% Si thin films,” Surf. Coatings Technol., vol. 307, pp. 359–365, Dec. 2016, doi: 10.1016/j.surfcoat.2016.09.013. | spa |
dc.relation.references | L. S. Kuburi, “Effect of temperature on anodized aluminum alloys,” Heal. Saf. Environ., vol. 2, no. 1, pp. 44-49–49, 2014, doi: 10.14196/hse.v2i1.124. | spa |
dc.relation.references | T. T. Kao and Y. C. Chang, “Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids,” Appl. Surf. Sci., vol. 288, pp. 654–659, 2014, doi: 10.1016/j.apsusc.2013.10.091. | spa |
dc.relation.references | K. Labisz and J. Konieczny, “Application of anodization process for cast aluminium surface properties enhancement,” vol. 61, no. 3, pp. 1005–1010, 2016, doi: 10.1515/amm-2016-0222. | spa |
dc.relation.references | Y. S. Choudhary, L. Jothi, and G. Nageswaran, “Electrochemical Characterization,” in Spectroscopic Methods for Nanomaterials Characterization, vol. 2, Elsevier, 2017, pp. 19–54. | spa |
dc.relation.references | M. Schneider, T. Liebmann, U. Langklotz, and A. Michaelis, “Microelectrochemical investigation of anodic oxide formation on the aluminum alloy AA2024,” Electrochim. Acta, vol. 249, pp. 198–205, 2017, doi: 10.1016/j.electacta.2017.07.160. | spa |
dc.relation.references | R. C. F. John E. McMurry, Química General, 5th ed. Mexico, 2009. | spa |
dc.relation.references | M. Guezmil, W. Bensalah, A. Khalladi, K. Elleuch, and H. F. Ayedi, “Friction coefficient and microhardness of anodized aluminum alloys under different elaboration conditions,” Trans. Nonferrous Met. Soc. China, vol. 25, no. 6, pp. 1950–1960, 2015, doi: 10.1016/S1003-6326(15)63803-1. | spa |
dc.relation.references | O. E. Abdel-Salam, M. A. Shoeib, and H. A. Elkilany, “Characterization of the hard anodizing layers formed on 2014-T3 Al alloy, in sulphuric acid electrolyte containing sodium lignin sulphonate,” Egypt. J. Pet., 2017, doi: 10.1016/j.ejpe.2017.07.014. | spa |
dc.relation.references | P. Kuisma-Kursula, “Accuracy, Precision and Detection Limits of SEM-WDS, SEM EDS and PIXE in the Multi-Elemental Analysis of Medieval Glass,” X-Ray Spectrom., vol. 29, no. 1, pp. 111–118, 2000, doi: 10.1002/(SICI)1097- 4539(200001/02)29:1<111::AID-XRS408>3.0.CO;2-W. | spa |
dc.relation.references | D. Elabar, G. R. La Monica, M. Santamaria, F. Di Quarto, P. Skeldon, and G. E. Thompson, “Anodizing of aluminium and AA 2024-T3 alloy in chromic acid: Effects of sulphate on film growth,” Surf. Coatings Technol., vol. 309, pp. 480–489, 2017, doi: 10.1016/j.surfcoat.2016.11.108. | spa |
dc.relation.references | J. Lu, G. Wei, Y. Yu, C. Guo, and L. Jiang, “Aluminum alloy AA2024 anodized from the mixed acid system with enhanced mechanical properties,” Surfaces and Interfaces, vol. 13, no. January, pp. 46–50, 2018, doi: 10.1016/j.surfin.2018.08.003. | spa |
dc.relation.references | D. A. Rigney, “The roles of hardness in the sliding behavior of materials,” Wear, vol. 175, no. 1–2, pp. 63–69, 1994, doi: 10.1016/0043-1648(94)90169-4. | spa |
dc.rights | Derechos Reservados - Universidad ECCI, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.subject.proposal | Aleación de aluminio | spa |
dc.subject.proposal | Anodizado | spa |
dc.subject.proposal | Óxido de aluminio | spa |
dc.subject.proposal | Desgaste | spa |
dc.subject.proposal | Rotor de Compresión | spa |
dc.subject.proposal | Aluminium alloy | eng |
dc.subject.proposal | Anodized | eng |
dc.subject.proposal | Aluminum oxide | eng |
dc.subject.proposal | Wear | eng |
dc.subject.proposal | Compression Rotor | eng |
dc.title | Evaluación del estado superficial y proceso de anodizado en rotor de compresión - Motor J69 T 25A marca Continental | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/updatedVersion | spa |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 4 de 4
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 6.45 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...

- Nombre:
- Cesión de derechos.pdf
- Tamaño:
- 372.68 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...

- Nombre:
- Nota de sustentación.pdf
- Tamaño:
- 166.8 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...

- Nombre:
- Anexo.pdf
- Tamaño:
- 127.31 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
Cargando...

- Nombre:
- license.txt
- Tamaño:
- 14.45 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: