Simulación de artificios en imágenes de tomografía computarizada y clasificación automática usando algoritmos de machine learning
Trabajo de grado - Pregrado
2022
La Tomografía axial computada ha permitido el diagnóstico temprano de múltiples patologías en cualquier parte del cuerpo. La exploración del cráneo y del cerebro por medio de un escáner nos muestra de manera detallada cada estructura que lo componen y acompañado de medios de contraste resalta las estructuras vasculares circundantes. En la práctica de un estudio pueden aparecer artificios o artefactos independientemente de su origen, que limitan la exploración escanográfica, esto lleva a detener el examen e iniciar de nuevo y sumado a esto con los medios de contraste se tienen que aplicar de nuevo dichos fármacos. Los escáneres de ´ultima generación permiten realizar reconstrucciones completas con pocas proyecciones limitando las dosis de radiación, por medio de métodos algebraicos estadísticos de reconstrucción. El presente trabajo muestra la simulación de artificios en imágenes de tomografía computarizada cerebral, la extracción de características de cada imagen y un algoritmo de clasificación automática para la diferenciación de los artefactos simulados. Los resultados muestran que el algoritmo es capaz de clasificar los artificios simulados con un porcentaje de 90 % debajo de la curva ROC.
- AEA. Tesis [18]
Descripción:
Trabajo de grado.pdf
Título: Trabajo de grado.pdf
Tamaño: 1.756Mb
PDF
LEER EN FLIP
Descripción: Cesión de derechos
Título: Cesión de derechos.pdf
Tamaño: 693.1Kb
PDF
Descripción: acta opción de grado
Título: Acta de opción de grado.pdf
Tamaño: 134.7Kb
PDF
Título: Trabajo de grado.pdf
Tamaño: 1.756Mb



Descripción: Cesión de derechos
Título: Cesión de derechos.pdf
Tamaño: 693.1Kb


Descripción: acta opción de grado
Título: Acta de opción de grado.pdf
Tamaño: 134.7Kb

