Mostrar el registro sencillo del ítem

dc.contributor.advisorBarco Burgos, Jimmy
dc.contributor.authorSotelo Acosta, Jose Miguel
dc.contributor.authorEspinel Ballesteros, Andres David
dc.date.accessioned2023-01-10T22:00:42Z
dc.date.available2023-01-10T22:00:42Z
dc.date.issued2018
dc.identifier.urihttps://repositorio.ecci.edu.co/handle/001/3200
dc.description.abstractEl presente proyecto tiene como objetivo modelar matemáticamente, caracterizar y diseñar celda de combustible para la producción de hidrógeno a presión atmosférica con el fin de generar parámetros de optimización sobre la producción de hidrógeno frente a cambios en variable de operación (voltaje, corriente, temperatura, electrólito y diseño de celda) con miras a implementar la tecnología en motores de combustión interna.spa
dc.description.tableofcontentsINTRODUCCIÓN 9 1. DEFINICIÓN DEL PROBLEMA 10 2. JUSTIFICACIÓN 12 3. OBJETIVOS 14 4. MARCO TEÓRICO 15 5. DISEÑO METODOLÓGICO 20 5.1. Elementos utilizados para la caracterización de las celdas 21 5.1.1 Paneles Solares 22 5.1.2 Regulador de Carga 22 5.1.3 Batería 23 5.1.4 PWM 23 5.1.5 Celda Electrolizadora Alcalina 24 5.1.5.1. Electrodos 25 5.1.5.2. Empaquetaduras 25 5.1.5.3. Mallas de Poliéster 26 5.1.5.4. Mordazas 26 5.1.5.5. Racores y acoples 26 5.1.6 Burbujeador 26 5.1.7 Mechero 27 5.1.8 Cámara termográfica 28 5.1.9 Caudalímetro 28 5.1.9.1 Estructura de caudalímetro 31 5.2. Fase de recolección de datos 34 6. RESULTADOS 37 6.1. Análisis de Datos Experimentales 37 6.1.1 Datos obtenidos por perfil de llama 37 6.1.2 Datos obtenidos por caudal 41 6.2. Modelación matemática para electrolizadores alcalinos 54 6.2.1. Nomenclatura 54 6.2.2. Modelación 54 6.2.3. Modelo Electroquímico 55 6.2.4. Modelo termodinámico 56 6.2.5. Modelo electroquímico 57 6.3. Verificación del Modelo 58 7. CONCLUSIONES Y RECOMENDACIONES 62 8. BIBLIOGRAFÍA 63spa
dc.format.extent65 p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad ECCIspa
dc.rightsDerechos Reservados - Universidad ECCI, 2018spa
dc.titleModelación matemática, caracterización y diseño de celdas de combustible para la producción de hidrógeno a presión atmosférica.spa
dc.typeTrabajo de grado - Pregradospa
dc.contributor.corporatenameUniversidad ECCIspa
dc.publisher.placeColombiaspa
dc.relation.referencesC. Yilmaz, E. Uludamar, and K. Aydin, “Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines,” Int. J. Hydrogen Energy, vol. 35, no. 20, pp. 11366–11372, 2010.spa
dc.relation.referencesM. K. Baltacioglu, H. T. Arat, M. Özcanli, and K. Aydin, “Experimental comparison of pure hydrogen and HHO (hydroxy) enriched biodiesel (B10) fuel in a commercial diesel engine,” Int. J. Hydrogen Energy, vol. 1, pp. 3–9, 2015.spa
dc.relation.referencesS. A. Musmar and A. A. Al-Rousan, “Effect of HHO gas on combustion emissions in gasoline engines,” Fuel, vol. 90, no. 10, pp. 3066–3070, 2011.spa
dc.relation.referencesI. E. Agency, “Technology Roadmap Bioenergy for Heat and Power.”spa
dc.relation.referencesM. M. El-Kassaby, Y. A. Eldrainy, M. E. Khidr, and K. I. Khidr, “Effect of hydroxy (HHO) gas addition on gasoline engine performance and emiss ions,” Alexandria Eng. J., vol. 55, no. 1, pp. 243–251, 2016.spa
dc.relation.referencesP. Chaiwongsa, N. Pornsuwancharoen, and P. P. Yupapin, “Effective hydrogen generator testing for on-site small engine,” Phys. Procedia, vol. 2, no. 1, pp. 93–100, 2009.spa
dc.relation.referencesJ. A. Caton, “Implications of fuel selection for an SI engine: Results from the first and second laws of thermodynamics,” Fuel, vol. 89, no. 11, pp. 3157–3166, 2010.spa
dc.relation.referencesM. B. King, “Water electrolyzers and the zero-point energy,” Phys. Procedia, vol. 20, pp. 435–445, 2011.spa
dc.relation.referencesC. Bae and J. Kim, “Alternative fuels for internal combustion engines,” Proc. Combust. Inst., vol. 0, pp. 1–25, 2016.spa
dc.relation.referencesEnergy.Gov, “Vehicle Technologies Office: Advanced Combustion Engines | Department of Energy.” [Online]. Available: http://energy.gov/eere/vehicles/vehicle technologies-office-advanced-combustion-engines.spa
dc.relation.referencesFuelCellToday, “Water Electrolysis & Renewable Energy Systems,” vol. 2, p. 48, 2013.spa
dc.relation.referencesK. Zeng and D. Zhang, “Recent progress in alkaline water electrolysis for hydrogen production and applications,” Prog. Energy Combust. Sci., vol. 36, no. 3, pp. 307–326,2010spa
dc.relation.referencesK. C. Sandeep, S. Kamath, K. Mistry, A. Kumar M, S. K. Bhattacharya, K. Bhanja, and S. Mohan, “Experimental studies and modeling of advanced alkaline water electrolyser with porous nickel electrodes for hydrogen production,” Int. J. Hydrogen Energy, vol. 42, no. 17, pp. 12094–12103, 2017.spa
dc.relation.referencesØ. Ulleberg, “Modeling of advanced alkaline electrolyzers:a system simulation approach,” Int. J. Hydrogen Energy, vol. 28, pp. 21–33, 2003.spa
dc.relation.referencesJ. Barco Burgos, “GASIFICACIÓN DE CUESCO DE PALMA PARA LA OBTENCIÓN DE GAS COMBUSTIBLE EN UN REACTOR DE LECHO FIJO,” 2015.spa
dc.relation.referencesI. Dincer and C. Acar, “Innovation in hydrogen production,” Int. J. Hydrogen Energy, vol. 42, no. 22, pp. 14843–14864, 2017.spa
dc.relation.referencesT. da Silva Veras, T. S. Mozer, D. da Costa Rubim Messeder dos Santos, and A. da Silva César, “Hydrogen: Trends, production and characterization of the main process worldwide,” Int. J. Hydrogen Energy, vol. 42, no. 4, pp. 2018–2033, 2017.spa
dc.relation.referencesY. Attia and M. Samer, “Metal clusters: New era of hydrogen production,” Renew. Sustain. Energy Rev., vol. 79, no. May 2016, pp. 878–892, 2017.spa
dc.relation.referencesM. Wang, Z. Wang, X. Gong, and Z. Guo, “The intensification technologies to water electrolysis for hydrogen production - A review,” Renew. Sustain. Energy Rev., 2014.spa
dc.relation.referencesB. Paul and J. Andrews, “PEM unitised reversible/regenerative hydrogen fuel cell systems: State of the art and technical challenges,” Renew. Sustain. Energy Rev., vol. 79, no. April 2016, pp. 585–599, 2017.spa
dc.relation.referencesA-PERAZA, G. ALONSO-NÚÑEZ, L. MANZANAREZ PAPAYANOPOULOS, Y. VERDE-GÓMEZ, and A. KEER-RENDÓN, “MODELACIÓN MATEMÁTICA DE LA REACCIÓN DE EVOLUCIÓN DEL HIDRÓGENO,” Rev. Int. Contam. Ambient., vol. 24, no. 1, pp. 21–31, 2008.spa
dc.relation.referencesM. Ozcanli, M. A. Akar, A. Calik, and H. Serin, “Using HHO (Hydroxy) and hydrogen enriched castor oil biodiesel in compression ignition engine,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23366–23372, 2017.spa
dc.relation.referencesH2 y CO en una celda de combustible con ánodo de platino-estaño Oxidation of H2 and CO in a fuel cell with a Platinum-tin Anode,” Ing. e Investig., vol. 24, no. 2, pp. 35–40, 2004.spa
dc.relation.referencesA. Ignacio and B. Arce, “tecnologías alternativas para vehículos automotores y su impacto en las concentraciones de carbono atmosférico Dinámica de la penetración de tecnologías alternativas para vehículos automotores y su impacto en las concentraciones de carbono atmosférico,” 2011.spa
dc.relation.references“Review of water electrolysis technologies and design of renewable hydrogen production systems.”spa
dc.relation.referencesA. Manabe, M. Kashiwase, T. Hashimoto, T. Hayashida, A. Kato, K. Hirao, I. Shimomura, and I. Nagashima, “Basic study of alkaline water electrolysis,” Electrochim. Acta, 2013.spa
dc.relation.referencesR. Bhandari, C. A. Trudewind, and P. Zapp, “Life cycle assessment of hydrogen production via electrolysis - A review,” Journal of Cleaner Production. 2014.spa
dc.relation.referencesS. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari, and Y. Kiros, “Advanced alkaline water electrolysis,” Electrochim. Acta, 2012.spa
dc.relation.referencesC. K. Kjartansd??ttir, L. P. Nielsen, and P. M??ller, “Development of durable and efficient electrodes for large-scale alkaline water electrolysis,” Int. J. Hydrogen Energy, 2013.spa
dc.relation.referencesP. Shukla, K. K. Singh, P. K. Tewari, and P. K. Gupta, “Numerical simulation of flow electrolysers: Effect of obstacles,” Electrochim. Acta, vol. 79, pp. 57–66, 2012.spa
dc.relation.referencesM. H. Sellami and K. Loudiyi, “Electrolytes behavior during hydrogen production by solar energy,” Renew. Sustain. Energy Rev., vol. 70, no. July 2016, pp. 1331–1335, 2017.spa
dc.relation.referencesP. Haug, B. Kreitz, M. Koj, and T. Turek, “Process modelling of an alkaline water electrolyzer,” Int. J. Hydrogen Energy, vol. 42, no. 24, pp. 15689–15707, 2017.spa
dc.relation.referencesZ. Abdin, C. J. Webb, and E. M. A. Gray, “Modelling and simulation of an alkaline electrolyser cell,” Energy, vol. 138, pp. 316–331, 2017.spa
dc.relation.referencesM. J. Lavorante, R. Munaro, J. I. Franco, H. J. Fasoli, and A. Sanguinetti, “Impreso en la Argentina,” Av. en Energías Renov. y Medio Ambient., vol. 15, 2011.spa
dc.relation.referencesE. Aguilar, “Evaluación electróquimica de distintos arreglos de electrolizadores alcalinos,” p. 71, 2015.spa
dc.relation.referencesJ. Rafael and L. Ramírez, “Modelo dinámico de un electrolizador alcalino.”spa
dc.relation.referencesRousar I. Fundamentals of electrochemical reactors. In: Ismail MI, editor. Electrochemical reactors: their science and technology part A. Amsterdam: Elsevier, 1989.spa
dc.relation.referencesPickett DJ. Electrochemical reactor design, 2nd ed. New York: Elsevier, 1979.spa
dc.relation.referencesGriesshaber W, Sick F. Simulation of Hydrogen–Oxygen–Systems with PV for the Self-Sufficient Solar House. FhG-ISE, Freiburg im Breisgau, 1991 (in German).spa
dc.relation.referencesHavre K, Borg P, Tommerberg K. Modeling and control of pressurized electrolyzer for operation in stand alone power systems. Second Nordic Symposium on Hydrogen and Fuel Cells for Energy Storage, Helsinki, January 19–20, 1995. p. 63–78.spa
dc.relation.referencesVanhanen J. On the performance improvements of small-scale photovoltaic hydrogen energy systems. PhD thesis, Helsinki University of Technology, Espoo, Finland, 1996.spa
dc.relation.referencesHug W, Divisek J, Mergel J, Seeger W, Steeb H. Highly efficient advanced alkaline electrolyzer for solar operation. Int J Hydrogen Energy 1992;17(9):699–705.spa
dc.relation.referencesUlleberg I. Simulation of autonomous PV-H2 systems: analysis of the PHOEBUS plant design, operation and energy management. ISES 1997 Solar World Congress, Taejon, August 24–30, 1997spa
dc.relation.referencesA. Salami Tijani, N. Afiqah Binti Yusup, and A. Abdol Rahim, “Mathematical Modelling and Simulation Analysis of Advanced Alkaline Electrolyzer System for Hydrogen Production,” 2014spa
dc.relation.referencesA. El-Sharif, “Simulation Model of Solar-Hydrogen Generation System.”spa
dc.relation.referencesP. Olivier, C. Bourasseau, and P. B. Bouamama, “Low-temperature electrolysis system modelling: A review,” Renew. Sustain. Energy Rev., vol. 78, no. March, pp. 280–300, 2017spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalCalentamiento globalspa
dc.subject.proposalConcentración de gases contaminantes en la atmósferaspa
dc.subject.proposalCombustibles renovablesspa
dc.subject.proposalGlobal warmingeng
dc.subject.proposalConcentration of polluting gases in the atmosphereeng
dc.subject.proposalRenewable fuelseng
dc.type.coarhttp://purl.org/coar/resource_type/c_46ecspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero en Mecánicaspa
dc.description.programIngeniería Mecánicaspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem